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Programming - lecture 1 
Learning objectives 
You will learn how to: 

- Write R scripts to import and explore data 
- Use data tidying techniques and visualization tools 
- Apply data transformation techniques 
- Perform regression analysis and write basic loops and functions 
- Apply string manipulation techniques and regular expressions 
- Employ textual analysis techniques 

 
How to leverage AI for learning programming: 

- Code explanations 
- Debugging assistance 
- Practice problems 
- NOT replace your own coding skills, AI is here to assist. 

 

R and RStudio: coding basics 
Learning to program is like learning a new language, it takes practice and patience. 
Programming skills are transferable to other analytics tools (tools like Java, SQL, 
Python etc.) 
 
What is R? 

- Programming language for statistical computing and graphics. 
- Open source and free software 

 
What is RStudio? 

- Integrated development environment (IDE) for R. 
- Open source and free software 
- Helpful features 

o User-friendly interface, code autocompletion and exhaustive help on any 
object. 

 
  



In the interface of RStudio there are 4 windows that are aligned on the screen as 
follows: 

1. Script editor 
Enter commands and save to file 

3. Workspace 
View active objects and history of 
commands executed 

2. Console 
Enter commands and see output 

4. Files/Plots/Packages/Help 
Open files, view plots, install and load 
packages or use the help function. 

 
You can use R as calculator, by simply typing the calculation you want to perform. 

- R also knows math functions like square root (=sqrt()) 
- R commands will be shown alongside their resulting outputs, if entered in the R 

console. 
 
R packages 

What is an R package? 
- Collection of functions, data and documentation that explains the package 
- It adds useful and extra functionality not included in base R 

 
Download and install a package 

- install.packages(), e.g., install.packages(“tidyverse”) 
- You only need to install a package once 

 
Load the installed package 

- library(), e.g., library(tidyverse) 
- You need to load a package each time you open RStudio 

o Makes all its functions available to use 
o Coding rule: Load the packages at the start of your R session or script 

 
Objects 

R can store information as an object. This can be everything from a whole dataset to 
a certain text (=string variable) 

- Use the assignment operator (<-) to assign some value to an object. 
- Object_name <- value 

o E.g. x <- 15 or y <- “Hi, welcome to the first programming lecture.” 
- The created object will appear in your workspace window. 

o Coding rule: Use informative names for files, variables, and functions. 
- Assigning a new value to an existing object overwrites. The previous value.  

 



R recognizes different classes of objects. 
- Assigning object into classes allows R to perform class-specific operations 
- Use class() to check the class of an object. 

o Classes can vary from “numeric”, “character” to “function” (=e.g. sqrt) 
 
Vectors 
A one-dimensional collection of elements, all of the same data type 

- They enable efficient data manipulation 
 
Create vectors 

- c() function, which stands for “concatenate” 
- Commas separate different element of a vector 

o E.g. c(TRUE, FALSE, True, NA) 
 
Types of vectors (typeof()) 

- logical vector: FALSE, TRUE, and NA (e.g. c(TRUE, FALSE, TRUE, NA)) 
- Numeric vector: Numbers (e.g. c(1, 2, 3)) 
- Character vector: Strings (e.g. c(“NL”, “BE”, “DE”)) 

 
Access specific elements of a vector (“indexing”) 

- By using [] 
o E.g. b[1] in vector b <- c(TRUE, FALSE, TRUE, NA) gives TRUE. 

 
Combine multiple vectors into one by simply putting the vectors you want to add into 
a new vector. 
 

Avoiding errors 
Encountering errors is part of the learning process, you’ll need to learn how to fix these 
errors. 

- Error: object not found 
o R is case sensitive, so always check your spelling. 

- Error: incomplete expression 
o When you don’t finish an expression you’ll get the + prompt. 
o Press ESC if you want to cancel the command being evaluated. 

 
If you at some point don’t know what to do for a specific function you can always use 
the help function. 

- E.g. help(class()) 



Or use google or chatgpt for example. 

Data import 
The working directory is the location on your computer where R loads data from and 
saves data from. 

- To display the current working directory: getwd() 
 
You can set a working directory where to store all your data on the computer. 

- Use: setwd() 
- Relative paths are flexible if you move your project folder. 

o .. : parent directory (e.g., C:/Users) 
o . : current directory (e.g., C:/Users/Programming) 

- Absolute paths specify the full location (e.g. C:/Users/Programming/Week 1) 
- Use / as path separator 

 
Tidyverse 

There are many ways to write code in R that produce the same results 
- The tidyverse is like a dialect or syntax style of R programming 
- It provides a more efficient and elegant way to work with data 
- It is build for data science tasks: importing, cleaning, and transforming 

 
To load files in R you’ll need the readr package (=part of tidyverse). For different 
filetypes you’ll need different functions 

- Txt. Files: read_delim() 
- Csv. Files: read_csv() (comma delimited) and read_csv2() (semi-colon 

delimited) 
o The col_names argument is standard set at TRUE, this means that the 

first line of the file being read contains the variable names. 
o If this is not the case, you can use skip = n to skip the first n lines 
o Use comment = “#” to drop all lines that start with # 

 
A tibble or data.frame object is a two-dimensional table with rows and columns, 
where each column can be of a different data type 

- Use view() to view a table-like representation of tibble or data.frame objects. 
 
Data export 

Use the function write_csv() to save data as a CSV file 
- E.g. write_csv(name dataset, “Filename”) 
- Use a new filename if you don’t want to replace the original file 



 
To view the first rows of data you can use: head() 

- E.g. head(name dataset) 
- If you only want to see the first n rows you can add it to the function 

o E.g. head(name dataset, n) 
To view the last rows of data you can use: tail() 

- E.g. tail(name dataset, n) 
 
Summarizing data characteristics 

To get insights into each variable’s distribution and characteristics use summary() 
- This helps in understanding variable types, ranges, and missing values 

o E.g. summary(name dataset) 
- Check 1 specific column of the data by using $ 

o E.g. summary(name dataset$name column) 
- Check multiple columns of the data by using [] 

o E.g. summary(name dataset [1:5]) 
o This shows the summary of column 1 to 5. 

 
Dataset structure 
The dim() function checks the dimension of the dataset 

- E.g. dim(name dataset) 
- It returns 2 values 

o The number of observations (rows) 
o The number of variables (columns) 

 
The str() function checks the structure of the dataset 

- E.g. str(name dataset) 
- It returns a summary of the dataset, such as: 

o Number of observations (rows) and variables (columns) 
o Data types of each column (e.g. integer, numeric, character, factor) 
o The first few values in each column.  

 

R markdown 
R markdown is a plain text file format that combines code, text, and results in a single 
document. It support various output formats, such as PDF and Word, and it generated 
high-quality, fully reproducible reports for easy sharing and collaborating. To create a 
new R Markdown document you do the following: File -> New File -> R Markdown. To 
generate reports in PDF, Word or HTML format you use the knit function in the toolbar. 



 
An R Markdown document contains 3 types of content 

1. YAML header surrounded by: --- 
o Specifies title, author, date and output format. 

2. Chunks of R code surrounded by: ``` 
3. Text with simple text formatting (#=first level header, ##=second level header) 

 
Run code in R Markdown: 

- Insert a code chunck: Ctrl/Cmd+Alt+I 
- Run current code line: Ctrl+Enter 
- Run current code chunk: Ctrl+Shift+Enter 

 
Chunk options 

- Echo=FALSE  -> show results, not code in finished line 
- Eval=FALSE  -> don’t run the code 
- Include=FALSE -> run the code, but code & result aren’t shown 
- Message=FALSE -> prevent messages in finished line 
- Warning=FALSE -> prevent warning in finished file 
- Results=’hide’  -> hide printed output 
- Fig.show=’hide’  -> hide plots 

 

Lecture 2 
Tidying data 
A large portion of data analysis time is spent cleaning and preparing data. Tidy 
datasets are easy to model, visualize and organized in a specific structure. But the 
main goal of tidying data is to store data values in a uniform way to facilitate analysis. 
 
There are 3 interrelated rules which makes a dataset tidy: 

1. Each variable must have its own column. 
2. Each observation must have its own row. 
3. Each value must have its own cell. 

 
All packages in the tidyverse are designed to work with tidy data. You can tidy up 
messy data with the tidyr package (is part of tidyverse).  
 

Pivoting 



Pivoting a table allows to change the form of your data without changing any of the 
values. You can pivot from wide to long: pivot_longer(), or from long to wide: 
pivot_wider(). 
 
Long       Wide 

i j Grade 

1 1 8 

1 2 4 

2 1 6 

2 2 7 

 
Wide to long 

- Pivot_longer(data, cols, names_to=”name”, values_to=”value”) 
o Data: data frame 
o Cols: columns to pivot into a longer format 
o Names_to: name of the column created from the data stored in the 

column names 
o Values_to: name of the column created from the data stored in cell 

values. 
 

Pivot_longer(table, c(“2024”,”2025”), names_to=”Year”, values_to=”Grade”) 
 
 
 
 
 
 
 
  

i Grade1 Grade2 

1 8 4 

2 6 7 

ID 2024 2025 

1 8 4 

2 6 7 

ID Year Grade 

1 2024 8 

1 2025 4 

2 2024 6 

2 2025 7 



Long to wide 

- Pivot_wider(data, names_from=”name”, values_from=”value”) 
o Data: data frame 
o Names_from: name of the column to get the names of the output 

columns from. 
o Values_from: name of the column to get the cell values from. 

 
Pivot_wider(table, names_from=”Year”, values_from=”Grade”) 
 

 
 
 
 
 
 

 

Separating and uniting columns 
Sometimes it can happen that there’s multiple data in one cell (e.g. lastname/ 
firstname) or if you want to combine two cells. Then you can use one of the two 
following codes: 

- Separate(data, col, into, sep) 
o Data: data frame 
o Col: column to separate 
o Into: names of new columns 
o Sep: separator between columns 
o E.g. separate(table, Name, into=c(“Lastname”, “Firstname”), sep=”/”) 

- Unite(data, col, columns, sep) 
o Data: data frame 
o Col: name of the new column 
o Columns: columns to unite 
o Sep: separator between values 
o E.g. unite(table, col=Name, c(“Lastname”, “Firstname”), sep=”/”) 

 

Handling missing values 
Datasets often have missing values (NA). If you ignore these missing values this can 
lead to biased analyses or broken visualizations. 
To detect missing values, you can use 2 functions: 

- Is.na() 

ID 2024 2025 

1 8 4 

2 6 7 

ID Year Grade 

1 2024 8 

1 2025 4 

2 2024 6 

2 2025 7 



o This tests each element for missing values (Gives TRUE if it’s missing) 
- Sum(is.na()) 

o Counts the number of missing values. 
 
You can drop the rows with missing values using drop_na().  
To replace missing values you can use replace_na() 
 

Data visualization: Tables 
Use the stargazer package to produce high-quality summary and regression tables. 
Tables can directly be exported to LaTeX, HTML or text formats. This is especially useful 
when working with R markdown. 
 
Summary table 

Descriptive statistics in text format, results can be seen in R console. 
- e.g. stargazer(as.data.frame(df), type=”text”, title=”new title”, digits = 1, 

out=”table.txt”) 
To ensure that the LaTeX table code is directly inserted into the document without 
being altered you have to put: results = “asis” into the chunk. 

 

Data visualization: Graphs 
In R you can create graphs with the ggplot2 package (part of tidyverse).  
To make a graph you use the following functions: 

- Define the dataset to use in the graph 
o ggplot() -> e.g., ggplot(data=df) 

- Specify which variables to map to the x and y axes 
o aes() -> e.g., ggplot(data=df, mapping=aes(x=income, y=experience)) 

- Define the plot to draw 
o geom_function() -> e.g., ggplot(data=df, mapping=aes(x=income, 

y=experience)) + geom_point() 
- Save the graph to current working directory 

o ggsave() -> e.g., ggsave(filename = “Figure 1.png”) 
 
Common types of graphs: 

- geom_point(): scatter plot 
- geom_histogram(): Histogram 
- geom_line(): lines/time series plot 
- geom_bar(): bar plot 
- geom_boxplot(): Box plot 



- geom_density(): Density estimate 
- geom_smooth(): fitted regression line 

 
Example: Time series plot 

The geom_line() function draws a connected line. You can also filter the data with the 
following function: filter(data, condition) 
 
Advanced graphics 

You can also ad some aesthetics to the graph. The most common are: 
- color -> color for point/lines 
- fill -> fill color for areas 
- shape -> symbol for points (square, round, triangle etc.) 
- linetype -> type of line (solid, dashed, dotted etc.) 
- size -> sizo of points/lines 

The labs() function allows you to set labels for multiple plot elements all at once. 
It is also possible to work with multiple layers in your code. In this way you can show a 
scatterplot and a regression line in the same graph. To do so you can just type the 
codes on top of each other.  
 
Global vs local aesthetics 

- Global 
o Aesthetics are globally defined for the entire plot. Mappings for x, y and 

color apply to all layers in the plot. 
o ggplot(data=df, mapping=aes(x=income, y=experience, color=age)) + 

geom_point() + 
Geom_smooth() 

- Local 
o Aesthetics are locally defined within each layer 
o ggplot(data=df) + 

geom_point(mapping=aes(x=income, y=experience, color=age)) + 
Geom_smooth(mapping=aes(x=income, y=experience)) 

  



Lecture 3 
Data transformation 
Transform data with the dplyr package, which is part of tidyverse 
Basic grammar of data transformation 

- Operation on rows 
o filter(): picks rows of a table based on their values 
o arrange(): orders rows based on values of a column(s) 

- Operation on columns 
o select(): picks columns of a table based on their names 
o mutate(): adds new columns that are functions of existing columns 

- Operation on groups 
o summarize(): aggregates multiple rows down to a single summary 
o group by(): divides a table into groups 

 
Filter 

filter(data, ….): picks rows of a table based on 
their values that meet a certain condition. 

- data: data frame 
- ….: Condition(s) that must be true to 

keep a row 
- E.g. storms_a<-filter(storms, wind >=50) 

 
Arrange 

arrange(data, column1, column2, ….): orders rows based on values of a column 
- Data: dataframe 
- Column1, column2: Columns by which to arrange the data 
- desc(): descending order (ascending is standard) 
- E.g. storms_b<-arrange(storms, wind) 

 
Select (same as filter function but now for rows, easy reminder select has a c of 
columns and Filter has a r of rows) 
select(data, columns_to_select): picks columns of a table based on their names 

- Data: data frame 
- Columns_to_select: columns to keep 

o Direct column names: column names, separated by commas 
o Range of columns: : to select a range of columns 
o Column exclusion: - to exclude columns 



o E.g. storms_c<-select(storms, -Date) (Here you remove the column 
date) 

 
Mutate 

mutate(data, ….): adds new columns that are functions of existing columns 
- Data: data frame 
- ….: expressions that define the new columns (new_column_name = expression) 

o E.g. storms_d<-mutate(storms, ratio=pressure/wind) 
 
If else 

if_else(): create conditional variable 
- Condition: logical vector 
- TRUE: where condition is TRUE, matching values from TRUE 
- FALSE: where condition is FALSE, matching values from FALSE 
- E.g. storms_e<-mutate(storms, red=if_else(wind>100, 1, 0)) 

 
Summarize and group by 

Summarize(data, ….): aggregates multiple rows down to a single summary 
- Data: data frame 
- ….: One or more expressions that calculate summary statistics 

(new_column_name = summary_function(column_name)) 
o Summary functions: sum(), mean(), sd() 

 
Group_by(data, ….): divides a table into groups 

- Data: data frame 
- ….: columns to group by 

 
The pipe operator  

- %>% 
- This function allows to combine multiple function without always having to 

repeat for example the data frame. 
- E.g. (In this case you don’t have to repeat “table1” all the time in the functions) 

table1 %>% 
Group_by(Year) %>% 
Summarize(Mean_Case=mean(Case)) 

 
Ungroup 

The function ungroup() removes existing grouping structure created by the 
group_by() functions 



- If you don’t use the ungroup() function averages are calculated within each 
group, when you do use it, averages are calculated across all rows in the 
dataset. 

 
Row-wise 

Row-wise operations require grouping of a row 
- Built-in functions: rowSums(), rowMeans() 
- To select which columns to include use: across() 
- To handle missing values add: na.rm=TRUE 

o E.g. total_score=rowSums(across(c(Column1, column2)), na.rm=TRUE) 
 

Joining data 
Combine data with the dplyr package, which is part of tidyverse 
Basic grammar for combining data 
Operation on tables  

- Append columns (datasets have the same number of rows, but different 
columns) 

o Bind_cols(x,y): combines tables by adding columns side-by-side 
- Append rows (datasets have same columns but different rows) 

o Bind_rows(x,y): combines tables by stacking rows on top of each other. 
- Mutating joins 

o inner_join(x,y): keeps observations that occur in both x and y 
o left_join(x,y): keeps all observations in x 
o right_join(x,y): keeps all observations in y 
o Full_join(x,y): keeps all observations in either x or y 

- Filtering joins 
o semi_join(x,y): keeps all observations in x that have a match in y (but 

you’ll only keep the observations from x; no new column is added) 
o anti_join(x,y): drops all observations in x that have a match in y (You’ll 

only get the observations that aren’t in y) 
 
Keys: variables used to connect a pair of data frames in a join 

- Primary key: variable(s) that uniquely identifies each observation. 
- Foreign key: variable(s) that corresponds to a primary key in another table. 

 
Duplicate values 

Duplicate values can appear when merging, importing, or appending data 
- Identical values across entire rows or within specific columns 



 
Detect duplicates: duplicated() 

- You’ll get a logical vector: TRUE for duplicates 
Count duplicates: sum(duplicated()) 

- It will sum up the TRUE values. 
Locate duplicates: which(duplicated()) 

- It will give the row number of the duplicate. 
Remove duplicates: distinct() 
 

Dates in R 
To work with dates and times in R, you’ll need the lubridate package, which is part of 
the tidyverse package. 
 
Depending on how the date is written, you can convert character or numeric date 
values into date objects. 

- Y -> year 
- M -> month 
- D -> day 

 
Different functions 

- ymd(20221101) -> “2022-11-01” 
- dmy(01112022) -> “2022-11-01” 
- mdy(“November 1st, 2022”) -> “2022-11-01” 

 
It is also possible to calculate how much time elapsed between two dates 

- entry_date <- ymd(“2022-06-01”) 
implementation_date <- ymd(“2024-01-15”) 
implementation_date – entry_date 

Time difference of 593 days 
- You can also use as.numeric(x), this converts X into a number 

o as.numeric(implementation_date – entry_date) 
[1] 593 

 
Get individual components from a date variable by using $ (output is numeric!) 

- Get the year: df$year <- year(df$date) 
- Get the month: df$month <- month(df$date) 
- Get the day: df$day <- mday(df$date) 

 



Create a date variable from individual components with make_date() 
- Input = numeric 
- Output = date data type 

o E.g. df$date_new <- make_date(df$year, df$month, df$day) 
 

Lecture 4 
Regression analysis 
 
A regression analysis is a statistical method for analyzing a relationship between two 
or more variables. In other words, one variable can be predicted or explained by using 
information on the other variables.  

- Idea: fit a function that closely represents the trend in the data. 
 
The most common form of regression analysis is the linear regression. This fits a 
straight line to the data.  

- 𝑌 =  𝛼 +  𝛽𝑋 +  𝜀 
o Y: Dependent, response or outcome variable 
o X: Independent, explanatory or predictor variable 
o : Intercept 
o : slope coefficient 
o : error term 

- It uses the ordinary least squares 
In R you can also do a linear regression by using the lm(formula, data) function.  

- Formula: Y ~ X (+…) 
- Data: data frame 

You can do both a univariate and a multivariate linear regression 
- Univariate linear regression (=simple linear regression) 

o E.g. unireg <- lm(sales ~ adverstising, data=sales) 
- Multivariate linear regression 

o E.g. multireg <- lm(sales ~ advertising + rd, data = sales) 
The summary() function shows then the regression output. 
 



Call: model specification 
 

Residuals: The difference between the 
observed and predicted values (ideally 
this should be symmetrically distributed 
around the line) 
 

Coefficients: Significance testing 
(standard error, t-value and p-value) 
 

Residual standard error: std. dev. of 
residuals 

 
The function stargazer() can make a table out of the regression output. 

- E.g. stargazer(unireg, multireg, type=”text”, title=”sales”) 
 
It is also possible that you use categorical variables. In this case you can use a logistic 

regression. This fits a regression curve when Y is a categorical variable. These 
variables have a fixed and known set of possible values.  

- Binary logistic regression (A or B) 
- Multinomial logistic regression (A,B, C) 
- Ordinal logistic regression (A<B<C) 

In R the glm(formula, family, data) creates a logistic regression model.  
- Formula: Y~X (+…) 
- Family: probability distribution (for logistic regression: 

family=binomial(link=”logit)) 
- Data: data frame 

Generalized linear models allow for non-normally distributed dependent variables.  
 
Before you can execute the logistic regression, you will have to do some preparatory 
steps. It is important to transform categorical variables to factors. You can do this by 
using as.factor().  
 
The estimated coefficients are in log odds scale -> log ( 𝑝1−𝑝) 

 

Fixed effects 
Fixed effects control for unobservable confounding factors that are constant within 
categories. It is a variable that helps rule out alternative explanations for the 



relationship between the outcome and the explanatory variable of interest.  What is it 
in 3 points: 

- Fixed effects are dummy variables for each category 
- Used as covariates in regressions to account for unobservable factors 
- Add category-specific constants 

 
3 types of fixed effects 

1. Unit fixed effects 

o Account for fixed differences across units (e.g. industries, countries) 
o Basically, characteristics that vary across units but do not vary over time. 
o By including state fixed effects, you control for these time-invariant 

characteristics. 
2. Time fixed effects 

o Account for common time trends 
o Characteristics that vary over time, but do not vary across units. 
o By including year fixed effects, you control for these common time-

varying factors. 
3. Two-way fixed effects 

o Regression model including both unit and time fixed effects 

o Two-way fixed effects design accounts for confounding factors that are 
either: 

▪ Constant over time but vary across units. 
▪ Constant across units but vary over time. 

o Two-way fixed effects allow you to isolate the within-state relationship 
between the dependent and independent variable.  

 

In R you can include fixed effects as well. For this you’ll need the lfe package. 
Basic syntax: 
felm(regression formula, FE dimension, instrumental variable, SE clustering dimension, 
data frame) 
 

Panel data 
3 types 

1. Cross-sectional data 
o One point in time (t=1), many observation units (i=1, …, n) 

2. Time-series data 
o Many time periods (t=1, …, T), one observation unit (i=1) 

3. Panel data 



o Many observation units (i=1, …, n) over time (t=1, …, T) 
 
 

Loops 
Loops is a tool for reducing duplication of effort by automatically repeating a set of 
operations several times. There are 3 types of loops: 

1. for loop 
2. while loop 
3. Repeat loop 

e.g. merging 50 data files into one dataset.  
 
for loop 

Repeat a task a defined number of times. 
Basic syntax 

- for(element in vector){ 
expression 
} 

- e.g. for(i in 1:5) {  
print(i) 
} 
This line of code will print i that is each value in the vector, so it will give you the 
numbers 1, 2, 3, 4 and 5 

 
while loop 

It repeats a task until a specific condition is met. 
Basic syntax: 

- while(logical condition) { 
expression 
} 

- e.g. i <- 0 
while(i<=4){ 
i <- i + 1 
print(i) 
} 
This will give the output 1, 2, 3, 4 and 5. 

- If you don’t add the condition i <- i + 1, the loop will run indefinitely because i will 
always be 0 and thus meet the condition. 

 



Functions 
R is full of built-in functions. These are predefined functions that are available in R to 
perform common tasks or operations. R does also allow you to write your own function 
(=user-defined function). This function is a set of statements organized together to 
perform a specific task. 
Basic syntax: 

- f <- function(argument(s)) { 
statements 
} 

- This creates a function with name f which takes certain arguments and 
executes the following statements.  

- E.g. create a function that adds two numbers: 
Add_num <- function(a,b) { 
Result <- a+b 
Print(result) 
} 

- Call the function: 
Sum <- add_num(3, 4) 

 This will give the result 7 
 


