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Introduction to Econometrics – IBEB 
– Lecture 1, week 1 
 

Methods  
 

Everyday vs Scientific learning 
 
Everyday learning  
Learning through tradition or from experts requires little effort, but these sources can 
be wrong. On the other hand, via one’s own experience, one may learn the causal 
relationships between things, but there’s a possibility of overgeneralization due to 
selective observations and drawing inaccurate observations. 
 
Scientific learning answers the question “Is something true or not?” This involves 

1. Extending existing knowledge, which can be tested by collecting data and 
performing analysis (scientific methods). 

 

Association versus Causal Effect 
 
When there is an association between two variables, it does not necessarily imply 
causation.  
 
Association can provide useful fact descriptions, while causal effects indicate the 
relations between variables and, thus, can be used to understand the effectiveness 
of policy intervention. 
 

Types of data and unit of analysis 
 
Types of data 
 
Experimental data: used to estimate the causal effects (e.g. treatment and control 
group) 
 



Observational data: collected for general purposes and not designed to estimate 
causal effects 
 
Time dimensional 
 
Time series information on a set of indicators over time (e.g. GDP over several years) 
 
Cross-section is when a sample is observed and data collected at a specific point of 
time 
 
Panel data set combines the last two types mentioned before, when cross-sectional 
study is carried out over time 
 
Unit of analysis 
 
For different purposes the analysis will be built on different units: 

- Individuals 
- Firms 
- Regions 
- Countries 

 
Operationalization and conceptualization 
 
Conceptualization: means specifying what is meant by the specific terms used in  
research. 
 
Operationalization: the process of developing specific procedures to empirically 
represent the concepts defined during conceptualization. In other words, it is about 
measuring theoretical concepts. 
 
Quality of operationalization 
 
Reliability: Measurement methods are reliable and if the concept was to be 
measured repeatedly the findings of the research would be the same. 
 



Validity means that a measure accurately reflects the concept it is intended to 
measure. 
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OLS: simple linear regression model 
 

Relationships between variables 
 
One of the ways to find out about the relationship between variables can be by 
constructing a scatter plot. The relationship can be negative or positive, or there can 
be no relationship. 
 

Covariance and correlation 
 

It is not always enough to just observe the relationship, thus when we want to 
quantify it we can make relevant computations. 
 

Sample covariance:  𝑠𝑋𝑌 = 1𝑛−1 𝑖=1
𝑛∑ 𝑋𝑖 − 𝑋( ) 𝑌𝑖 − 𝑌( )

 
Where n is sample size,  is the value of X for observation i (similarly ) and  is the 𝑋𝑖 𝑌𝑖 𝑋
sample average of X (similarly ). The units of sample covariance = units X * units Y. 𝑌
 
Sample correlation:  𝑟𝑋𝑌 = 𝑠𝑋𝑌𝑠𝑋*𝑠𝑌
 
Where  is the sample covariance and  is the sample standard deviation of X 𝑠𝑋𝑌 𝑠𝑋
(similarly ). A correlation of 0 reflects no correlation, a correlation of +1 reflects 𝑠𝑌
perfectly positive correlation and -1 reflects a perfectly negative correlation. The 
correlation coefficient is unitless. It shows the strength of the relationship between 
X&Y. 



 
The linear regression model 
 
Linear regression attempts to formulate a causal effect of one variable (x) over 
another (y) which is unlike a mere two-sided association of correlation. 
 

 𝑌𝑖 = β0 + β1𝑋𝑖 + 𝑢𝑖
 

The error term  represents all other factors influencing Y and measures a vertical 𝑢𝑖
distance between the population regression line and an observation.  is the slope β1
of the regression line and  is the intercept. β0
 

The line of best fit 
 
The best fit line that fittingly depicts the relationship between the X and Y variables 
has to minimize the sum of the squared differences between observed data points 
and the population regression line. The differences are squared in order to prevent 
the positive and negative residuals from negating each other. 
 

To minimize  𝑖=1
𝑛∑ 𝑌𝑖 − β0 − β1𝑋𝑖( )2

● OLS estimator :   β0 β0 = 𝑌 − β1𝑋
● OLS estimator :   β1 β1 = 𝑖=1

𝑛∑ 𝑋𝑖−𝑋( ) 𝑌𝑖−𝑌( )
𝑖=1

𝑛∑ 𝑋𝑖−𝑋( )2 = 𝑠𝑋𝑌𝑠𝑋2
Note: unit of the coefficient of X can be stated as unit of Y by unit of X. 

● OLS predicted/fitted values:  𝑌𝑖 =β0 + β1𝑋𝑖
 

● Residuals:   𝑢𝑖 =𝑌𝑖 − 𝑌𝑖
 

Comparing correlation with linear regression model 
 
The linear regression model is a very flexible framework that allows several directions 
for extensions, such as: 
 



● Multiple X variables: having more than one independent variable 
simultaneously influencing Y. (multiple regression) 

● Nonlinear relationships 
● Discrete or binary variable 

 
While correlation coefficient is unitless, the OLS estimator of  is measured in . β1 𝑢𝑛𝑖𝑡𝑠 𝑌𝑢𝑛𝑖𝑡𝑠 𝑋
Linear regression model coefficient shows causality only under OLS assumptions, and 
if those do not hold it shows association and should not be used for policy design. 
 

Goodness of fit measures 
 
The  𝑅2
 
Observed value equal:  , in which  is explained by the model fitted value 𝑌𝑖 = 𝑌𝑖 + 𝑢𝑖 𝑌𝑖
and  is unexplained residuals. 𝑢𝑖

● Total sum of squares (TSS) is the total variation in the data:  𝑇𝑆𝑆 = 𝑖=1
𝑛∑ 𝑌𝑖 − 𝑌( )2

● Explained sum of squares (ESS):   𝐸𝑆𝑆 = 𝑖=1
𝑛∑ 𝑌𝑖 − 𝑌( )2

It shows the variation in the data explained by the model 
 

● Finally, the  is the proportion of sample variance of  that is explained by  𝑅2 𝑌𝑖 𝑋𝑖
 ;  𝑅2 = 𝐸𝑆𝑆𝑇𝑆𝑆 = 𝑖=1

𝑛∑ 𝑌𝑖−𝑌( )2

𝑖=1
𝑛∑ 𝑌𝑖−𝑌( )2 𝑅2 = 𝑐𝑜𝑟𝑟 𝑌𝑖, 𝑌𝑖( )2

In the case of single explanatory variable  𝑅2 = 𝑐𝑜𝑟𝑟 𝑌𝑖, 𝑋𝑖( )2
Range of :   𝑅2 0 ≤ 𝑅2 ≤ 1

=1: model predicts  perfectly 𝑅2 𝑌𝑖
=0: model ( ) does not predict any variance in  𝑅2 𝑋𝑖 𝑌𝑖

 
Standard Error of the Regression (SER) 
 
The SER shows the spread of the data points around the population regression line. 
Larger values indicate stronger deviation from predicted values. 
 



 𝑆𝐸𝑅 = 𝑆𝑢 = 𝑆𝑢2
 
Where  is the sample variance of the residuals  𝑆𝑢2 𝑢𝑖
 

 𝑆𝑢2 = 1𝑛−2 𝑖=1
𝑛∑ 𝑢𝑖2 = 𝑆𝑆𝑅𝑛−2
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OLS assumptions 
 

1. Zero conditional mean 
2. The observations are independently and identically distributed 
3. Large outliers are unlikely 

 

Assumption 1: Zero conditional mean 
 
The zero conditional mean assumption implies that the expected values of the  
residual value given a value of X is zero. 
 

 𝐸(𝑢𝑖|𝑋𝑖) =  0
 
The expected value of the residual is independent of X. This means that the 
correlation between the residual and X is zero. Thus the explanatory variable is 
uncorrelated with other factors that influence Y. 
 
To know and assert whether this condition holds, we must be sure of the random 
assignment of the variable X. If X is not randomly assigned it is difficult to confirm the 
validity of the zero-conditional mean assumption. 
 



If there is no random assignment to satisfy the OLS model, we need to suppose that X 
is uncorrelated with other factors, that is when X is ‘as good as random’. In order to 
measure the pure causal effect of X on Y, the uncorrelated assumption is important. 
Otherwise, there would be an omitted variable bias and the pure effect would not be 
accounted for. 
 
With simultaneous causality that is when variables influence each other, the 
zero-conditional mean will not hold. 
 

Assumption 2: Independently and identically distributed 
observations 
 
Independent and identical distribution holds in the case of simple random sampling 
from the same population. The distribution will be identical when the observations 
are obtained from the same population, and the observations are uncorrelated and 
thus independent. 
 
When the sample is not representative as well as for time series and panel data this 
assumption does not hold. 
 

Assumption 3: Large outliers in X and Y are unlikely 
 
OLS is very susceptible to the influence of outliers, and thus “finite kurtosis” is an 
essential assumption. Mathematically, this is defined as: 
 

 0 < 𝐸(𝑋𝑖4) < ∞; 0 < 𝐸(𝑌𝑖4) < ∞
 
If there are data errors it is best to eliminate large outliers by fixing or removing those 
data points. Fixing or dropping the data should only happen if it is suspected to be 
an error.  
 
Sometimes, certain outliers can have dramatic effects on the population regression 
line hence it is desirable to be skeptical of extreme points. 
 
 
 



Sampling distribution of OLS estimators 
 
The estimators of the constant  and coefficient of X  of the linear regression (β0) (β1)
models are computed from random samples and thus are random variables 
themselves with a probability distribution.  
 
As different samples can lead to different estimates, the estimators are just some 
points in the sampling distribution of the estimator. 
If one uses all possible samples of size n from a population and applies OLS to 
estimate the coefficients, one will realize that large samples of the  estimator ( ) β1 β1
approximate to a normal distribution. 
 
This comes directly from the central limit theorem. As the coefficient of X is 
independent and identically distributed, the expected value is the true value of the 
coefficient of X. This implies that the OLS estimator is unbiased: 
 

 𝐸(β1) = β1
 𝐸(β0) = β0

 
Note: With large samples OLS estimators follow approximately normal distribution. 
Therefore, normality assumption is not needed. 
 

Property of OLS estimators 
 
Unbiasedness 
 
When the estimators are unbiased. Therefore, the mean sampling distribution β1
equals and similar for  β1 β0
 
Unbiasedness of  is satisfied if assumptions 1 and 2 hold. When the number of β1
observations (sample size) increases the estimator of the coefficient of X becomes 
more consistent and converges towards the true value. 
 



 
 
 
Variance of estimators and consistency 
 
Because of the central limit theorem in large samples,  and  approximately follow β0 β1
a normal distribution  , and jointly they follow a bivariate normal β1 ∼ 𝑁 β0; σβ1 2( )
distribution. 
 
Variance of  :   β1 σβ1 2 = 1𝑛 × 𝑣𝑎𝑟 𝑋𝑖−µ𝑖( )𝑢𝑖[ ]𝑣𝑎𝑟 𝑋𝑖( )[ ]2
 
The variance of  decreases when the number of observations increases, when the β1
variance of residual factors decreases, and when the variance of the explanatory 
variable X increases. 
 
=> OLS estimator unbiased and consistent 
=> The sampling distribution used are hypotheses tests and confidence intervals 
 

Interpretation 
 
Conditional expectation of Y, given X for the population model : 𝑌𝑖 = β0 + β1𝑋𝑖 + 𝑢𝑖

 , which under Assumption 1 𝐸 𝑌𝑖 | 𝑋𝑖( ) = 𝐸 β0 + β1𝑋𝑖 + 𝑢𝑖 | 𝑋𝑖( ) = β0 + β1𝑋𝑖 + 𝐸 𝑢𝑖 | 𝑋𝑖( )
further simplifies to  𝐸 𝑌𝑖 | 𝑋𝑖( ) = β0 + β1𝑋𝑖
 
Most common interpretation of : when X goes up by 1, the expected value of Y β1
given X goes up by   β1𝐸(𝑌𝑖|𝑋𝑖 + ∆𝑋) = 𝐸(𝑌𝑖|𝑋𝑖) + ∆𝑋β1
 
Interpretation of the intercept 
 
Generally  indicates an average Y when   β0 𝑋𝑖 = 0
The intercept may not always be interpretable and it will depend on the data 
whether the interpretation will be meaningful.   
 



Example with binary regressors 
 
Take on only two values (Male/Female, Yes/No, Agree/Disagree) 
Dummy variable: D = 0,1 
 
Population model:   𝑌𝑖 = β0 + β1𝐷𝑖 + 𝑢
 
Conditional expectation:   𝐸(𝑌𝑖|𝐷𝑖) = β0 + β1𝐷𝑖
 
Average Y when D = 0:   𝐸(𝑌𝑖|𝐷𝑖) = β0
 
Average Y when D = 1:   𝐸(𝑌𝑖|𝐷𝑖) = β0 + β1
 
Interpretation:  is the difference between the average when D=1 and the average β1
when D=0.  is the change in average Y when D=1 compared to D=0. β1
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Hypothesis tests and confidence intervals in 
linear regression 
 

Two-sided hypothesis test  
 

 𝐻0:  β1 = β1,0   𝑣𝑠  𝐻1:  β1 ≠ β1,0
 

Rejects null hypothesis if the estimated value  deviates substantially from the β1𝑎𝑐𝑡
given hypothesized value .  β1,0



 
In other words, the null hypothesis is rejected if the probability of getting at least a 

value as extreme as the estimate  is very small (p-value) β1𝑎𝑐𝑡
 
t statistic and p-value 
 
P-value: probability of obtaining   which is even further away from hypothesized β1
value  than he obtained  (shown by the blue area). β1,0 β1𝑎𝑐𝑡
 

 
Source: Lecture 4  

 

t-statistic:  𝑡 = β1− β1,0𝑆𝐸(β1)
 
Decision rule and Rejection region  
 
Using the significance level of 5%: 
 
Reject  if 𝐻0

1.  𝑃 − 𝑣𝑎𝑙𝑢𝑒 < 0. 05
2.  (critical value for a two-sided test) 𝑡𝑎𝑐𝑡| | > 1. 96

 

Confidence intervals 
 
E.g: 95% confidence means that from all samples that can be drawn, the interval 
contains the true value of  in 95% of the cases.  β1



Confidence interval:  β1 − 1. 96 × 𝑆𝐸 β1( ) ;  β1 + 1. 96 × 𝑆𝐸 β1( )⎡⎢⎣ ⎤⎥⎦
 

Variance of error terms 
 
When the variance of the error term is constant for all given values of X, then there is 
homoskedasticity. Otherwise, it is heteroskedasticity. When homoskedasticity 
holds, the formula of standard errors of  can be simplified and the OLS estimator β1
has minimal variance amongst all unbiased linear estimators (efficient). 
 
However, homoskedasticity does not always hold. Therefore, it is important to use 
heteroskedasticity-robust standard errors. 
 

Significance 
 
Statistical significance is decisive in whether to reject or not to reject the null 
hypothesis. Economic significance involves not only statistical significance, but also 
the economic effect implied by the data analysis and testing’s result. Some 
statistical results may be significant but not economically meaningful. In this 
discussion of hypothesis testing for the linear regression coefficient, the key warning 
is that the size (the magnitude of the effect, i.e., ) matters. β1
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OLS: OVB, multiple linear regression, 
assumptions 
 
To measure the causal effect of variable X on Y one would want the OLS estimator to 
be unbiased. If, however, another variable Z is correlated with X and it has a causal 
effect on Y too, then the coefficient estimated for X would not purely reflect the 



causal effect of X on Y and would be a combination of effects, thus leading to a 
biased estimator. 
 
If the correlation between the error term and variable X is not equal to zero (the 
zero-conditional mean assumption is violated), then the variable Z as mentioned 
previously would affect Y. In this case the error term is function Z and other factors: 

 , where  is the remaining of the error term, with everything else 𝑢𝑖 = β2 × 𝑍 + 𝑣𝑖 𝑣𝑖
influencing Y except for X and Z. 
 
When zero-conditional mean assumption holds:  𝑐𝑜𝑟𝑟 𝑢𝑖, 𝑋𝑖( ) = 0 ⇔  β2 × 𝑐𝑜𝑟𝑟 𝑍𝑖, 𝑋𝑖( ) = 0
(assuming ). 𝑐𝑜𝑟𝑟 𝑣𝑖, 𝑋𝑖( ) = 0
 
When the estimator of  is biased we have that the expected value of  equals  β1 β1 β1
plus the bias. This is summarized in the formula:  𝐸 β1( ) =  β1 + β2 𝑐𝑜𝑟𝑟 𝑋1 , 𝑋2( )𝑠𝑋1 × 𝑠𝑋2
 
Direction of bias 
 
The bias, when a simple model includes X1 and omits X2, can be positive or negative 
depending on the sign of  and correlation between X1 and X2. β2

 
Source: Lecture 5 

 
Multiple regression model 
 
By including the omitted variable into the model we try to satisfy the zero-conditional 
mean assumption. The omitted variable will no longer cause a correlation of error 
term with X1. The regression model thus can be finally expanded as follows:  
 

 𝑌𝑖 = β0 + β1𝑋1 + β1𝑋2 + 𝑣𝑖



 
where the main variable of  interest  is X1, and X2 can be considered as the control 
variable. Since there is more than one coefficient that explains Y, it is a multiple 
regression model.  
 

Interpretation of multiple regression model 
 
Population multiple regression model is similar to the model with a single regressor 
and represents the average relationship between the independent variables and Y. 
The interpretation is the change in Y due to the change in X1 when X2 held constant. 
For example, if X2 is held constant, and X1 goes up by 1 then Y on average goes up by 

. The OLS estimators, predicted values and residuals are obtained similarly to a β1
model with a single regressor. 
 

Assumptions for the multiple regression model 
 
Similar assumptions to the one discussed for linear regression.  

1. Zero-conditional mean:  𝐸 𝑢𝑖|𝑋1𝑖, 𝑋2𝑖,..., 𝑋𝑘𝑖( ) = 0
 

If we are interested in causal effect of all X1, X2…Xk, we use a weaker assumption 
1. Conditional mean independence:  𝐸 𝑢𝑖|𝑋1𝑖, 𝑋2𝑖,..., 𝑋𝑘𝑖( ) =𝐸 𝑢𝑖|𝑋2𝑖,..., 𝑋𝑘𝑖( )

 
If interested in the causal effect of X1, we can make use of a weaker assumption that 
implies that the error term is independent of X1 and not all other variables. When 
conditional mean independence holds, one can interpret the effect of X1 on Y as a 
causal effect, and one can only interpret the effect of X2 on Y as a partial 
association. If the variable of interest is only X this is not a problem, we call X2 a 
control variable and X1 the variable of interest. 
 

2. Observations being independent and identically distributed 
 

3. Large outliers of the variables are unlikely 
 

4. No perfect multicollinearity  
 

Perfect collinearity between X1, X2 and X3 if there is a perfect linear relationship 
between 3 variables, such that  with . Perfect 𝑋1 = 𝑎 + 𝑏𝑋2 + 𝑐𝑋3 𝑏 ≠ 0 𝑎𝑛𝑑 𝑐 ≠ 0



collinearity between explanatory variables happens in such cases as having the 
same variable in different units, or a dummy variable trap. 
 
In situations when there is linear conversion of variables like change of units, it makes 
no reasonable sense to include both the variables (as you would essentially include 
the same variable twice in different measurement units).  
 
In the case of dummy variables, it is always advisable to drop out a dummy for one 
category. When interpreting models with one dummy dropped out, the coefficients 
are always interpreted relative to the dropped-out dummy (the base/reference 
category).  
 

Sampling distribution 
 
We need the sampling distribution for both confidence intervals and hypothesis 
tests. Under the 3 assumptions of OLS and no perfect multicollinearity, the estimator 
coefficients of the independent variables individually follow a normal distribution and 
collectively follow a multivariate normal distribution. 
 
Variance of   decreases with sample size n; decreases with variance of Xj; increases β𝑗
with variance of error term ; increases with correlation between X’s (imperfect 𝑢𝑖
multicollinearity), however if assumption 1 holds then the model is still unbiased. 
 

Measures of fit 
 
Standard Error of the Regression (SER) 
 
The SER, similarly to the simple regression model, shows the spread of the data 
points around the population regression line. Larger values indicate stronger 
deviation from predicted values. 

 𝑆𝐸𝑅 = 𝑆𝑢 = 𝑆𝑢2
 
Where  is the sample variance of the residuals  𝑆𝑢2 𝑢𝑖

 𝑆𝑢2 = 1𝑛−2 𝑖=1
𝑛∑ 𝑢𝑖2 = 𝑆𝑆𝑅𝑛−𝑘−1

 



However the SSR (sum squared residuals) is now divided by n-k-1 (where k stands for 
the number of independent variables that influence Y) to derive variance.  
 
The  𝑅2
 
Similarly to the simple regression model 

 𝑇𝑆𝑆 = 𝑖=1
𝑛∑ 𝑌𝑖 − 𝑌( )2

  𝐸𝑆𝑆 = 𝑖=1
𝑛∑ 𝑌𝑖 − 𝑌( )2

It shows the variation in the data explained by the model 
 
Finally, the  is the proportion of sample variance of  that is explained by  𝑅2 𝑌𝑖 𝑋𝑖

  𝑅2 = 𝐸𝑆𝑆𝑇𝑆𝑆 = 1 − 𝑆𝑆𝑅𝑇𝑆𝑆
A special characteristic of  is that it always increases when a regressor is added to 𝑅2
the model. In order to deflate this sensitivity the adjusted R-squared formula is as 
follows:  𝑅2 = 1 − 𝑛−1𝑛−𝑘−1 × 𝑆𝑆𝑅𝑇𝑆𝑆
 
Finally, it is noteworthy that the measure of fit cannot be compared and used if the 
dependent variables differ in the ways they are defined. Additionally, the measure of 
fit only represents the explained variation, but does not account for biases and 
whether the assumptions even hold. 
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OLS: hypothesis tests, confidence intervals 
and model specification 
 
When analyzing regression models, one of the worst problems encountered is when 
one of the three assumptions is violated, as that makes the estimator biased. If one 
variable is stipulated as being correlated with the variable X1, then this variable 



should be included in the model as a control variable since otherwise, the model 
could be subject to omitted variable bias.  
 
After introduction of this variable X2 (control variable), the zero-conditional mean 
must hold such that the conditional mean of other factors given variable X1 and 
variable X2 is 0. 
 

Hypothesis test for a single coefficient 
 
Hypothesis:  𝐻0:  β𝑗 = β𝑗,0  𝑣𝑠  𝐻1:  β𝑗 ≠ β𝑗,0 
T-statistic:  𝑡 = β𝑗−β𝑗,0𝑆𝐸 β𝑗( )
P-value:  𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2ϕ − 𝑡𝑎𝑐𝑡| |( )
Reject H0 at 5% sig.level:  𝑡𝑎𝑐𝑡| | > 1. 96
 

Test of joint hypotheses 
 
Test of joint hypotheses can be used to specify the null hypothesis that the 
coefficients of various variables equal to a hypothesized value, which are q 
restriction and the alternative hypothesis that one or more of these q restrictions 
does not hold. In general form the hypotheses are formulated as follows: 
 

 𝐻0:  β𝑗 = β𝑗,0 ,  β𝑚 = β𝑚,0 ... (𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑞 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠)  
  𝐻1:  𝑜𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑞 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑

 
One must use joint hypotheses testing instead of individual one because under the 
assumption, the coefficients have an approximate bivariate normal distribution in 
sufficiently large samples.  
 
In case if one only knows the individual t test and not the F test then the Bonferroni 
method can be incorporated which uses special critical values to account 
appropriately for the significance level. 
 

F-statistic 
 

 𝐻0:  β1 = 0 𝑎𝑛𝑑 β2 = 0  𝑣𝑠  𝐻1:  β1 ≠ 0 𝑎𝑛𝑑/𝑜𝑟 β2 ≠ 0 



 
The formula for F statistics can look different from previous courses as we do not 
assume homoskedasticity here.  

 𝐹 = 12 𝑡12+𝑡22−2ρ𝑡1,𝑡2𝑡1𝑡21−ρ𝑡1, 𝑡22( )
 
where  and  are the t-statistic of separate tests and  is the estimator of the 𝑡1 𝑡2 ρ𝑡1,𝑡2
correlation of the two t-statistics (it will happen to be 0 when there is no correlation 
between X1 and X2). 
 
The distribution of the F statistics in large samples follows F distribution with degrees 
of freedom q (number of restrictions) in the numerator and  in the denominator:  ∞

 𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ∼ 𝐹𝑞,∞
 
Reject H0: if  𝐹 >  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹𝑞,∞ 
 
Common critical values for : 10% sig. level =2.30, 5% =3.00, 1%=4.61 𝐹2,∞
 
When testing whether the coefficients have no effect on Y, that is when all 
coefficients except the constant are zero, the hypotheses can be stated as follows: 
 

 𝐻0:  β1 = 0 , β2 = 0... β𝑘 = 0  𝑣𝑠  𝐻1:  β𝑗 ≠ 0 ,  𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗
 

When such a null hypothesis is rejected at a given significance level, it means that 
coefficients are jointly significant or jointly significantly different from zero. 
 

Omitted variable bias 
 
Despite incorporating another variable X2 to prevent any bias, it is still very plausible 
that variables X1 and X2 (explanatory and control variables) do not satisfy the zero 
conditional mean assumption. In this case, one can adopt the weaker assumption of 
conditional independence.  
 
This implies the correlation between variable X1 and other factors is 0. This will result 
in the effect of variable X1 to be purely causal, but the effect of variable X2 will display 
partial association, thus a mixture of effects of variable X2 and other factors.  
 



If, however, even the conditional independence does not hold then the model has an 
omitted variable bias and more control variables can be introduced to the model. It 
is called a robustness check when one introduces changes into the model (like 
including new control variables) to see if the results would differ. 
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Nonlinear regression functions 
 
If the effect measured by the slope of the regression function depends on the value 
of the independent variable(s), we should have a nonlinear relationship. 
 
It is always advisable to check whether a non-linear model improves the linear 
model by testing whether an additional regressors are significantly different from 0, 
furthermore, the graph can be used to observe the evenness of the spread of points 
and whether there is an improvement in the fit too. 
 
There are a number of forms of non-linear models we can employ. Here we will 
cover: 

Form 1: Polynomials 
Form 2: Natural Logarithmic Transformation of the dependent and/or 
independent variable(s) 
Form 3: Interaction Effects 

 

Polynomial regression models  
 
Polynomials use a linear function of a variable, where the linear function contains 
the variable taken to the power.  
 
For quadratic polynomials, when the coefficient in front of squared variable is 
positive it represents the increasing returns to scale and when that coefficient is 
negative we can see decreasing returns to scale.  
 
 



Testing 
 
If the population regression function is considered linear, then the quadratic and 
higher-degree coefficients would not be useful in the regression functions. To test 
this, we can perform an F-test where the null hypothesis is the regression being linear 
and the additional regressors are equal to 0; the alternative hypothesis is that at 
least one of the additional regressors is not equal to 0. 
 

Natural logarithmic transformation of the variable 
 
This method employs the same regression model but with a logarithmic 
transformation of variable Y. 
 
2 reasons: 

- Outliers in the right tail can be dealt with using this method. Large outliers lead 
to a violation of the third OLS assumption, and they are less likely to affect the 
model after this transformation when the large outliers are compressed.  

- Used if one is interested in percentage changes. 
 
Log-linear model 
 
Logarithmic transformation of dependent variable (Y) only 

- Interpretation of : a 1-unit change in X corresponds to  change in β1 β1 × 100 %( )
Y (semi-elasticity). 

 
Linear-log model 
 
Logarithmic transformation of variable X only.  

- Interpretation:  change in X corresponds to units of Y .  1 % 0. 01 × β1 
 
Log-log model 
 
Both independent (X) and dependent (Y) variables are transformed logarithmically. 
- Interpretation: a  change in X corresponds to a  change in Y. In this case,  1 % β1 % β1
is called elasticity.  
 



Interaction effect 
 
The example of a model that includes interaction effect: 

 𝑌𝑖 = β0 + β1𝑋1 + β2𝑋2 + β3𝑋1𝑋2 + 𝑢𝑖
 
The inclusion of  term accounts for the interaction effect. It is useful to add β3𝑋1𝑋2
when we believe that the effect of a variable depends on another variable. 
  

When OLS fails 
 
OLS fails when there’s nonlinearities in the parameters. The previous models are 
nonlinear in X but are linear functions of the coefficients (parameters) 
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Internal and external validity 
 
Association is not causation and when there are any policy recommendations only 
causal effects should hold an important value.  
 
A study is internally valid if the statistical inferences about the causal relationship 
are valid for the population and setting studied.  
 
There are two sets of population and setting: one that is studied and one to which 
inferences can be generalized upon. The population studied is the one from which 
the sample was derived. The population of interest is one to which the inferences 
are generalized on. The setting is the institutional, legal, social and economic 
background of the study. 
 
Threats to internal validity if these do not hold: 

1. The estimator of the causal effect should be unbiased and consistent. 



2. The hypothesis test should have the required significance level  
 
A study is externally valid if the inferences can be used to make generic inferences 
to other populations and settings too.  
 

Threat 1: Omitted variable bias (OVB) 
 
If there is a variable that is omitted and is correlated with the variable of interest, as 
well as being a determinant of the dependent variable, then there is an omitted 
variable bias. 
 
If the correlation between the variable of interest and omitted variable has the same 
sign as the effect of omitted variable on dependent variable, then there is an upward 
bias. If however, the signs are opposite then there is a downward bias. 
 
Good and bad control variables 
Control variables’ values should always be generated before the variable of interest’s 
are. Stated simply, if the variable of interest has a causal effect on the new (control) 
variable then the new variable is not a good control. This is not applicable the other 
way around (that is, if the control variable affects the variable of interest). 
 

Threat 2: Errors-in-variables 
 
Independent variable 

- Random measurement error (classical measurement error): Bias towards 0 
- Non-random: downward or upward sloping bias 

 
Dependent variable 

- Random: No bias but reduced precision 
- Non-random: downward or upward sloping bias 

 
Solutions: instrumental variables regression, and developing a mathematical model 
of the measurement error and using the resulting formula for correction. 
 

Threat 3: Sample selection 
 



Missing data at random leads to no bias. Missing data for the regressor also leads to 
no bias, however, the interpretation of the coefficient would then only hold for a 
subset of the population for which the observations are not missing.  
The exception is when there is missing data on the dependent variable, then there is 
a bias. The solution to this issue is the use of appropriate sampling. 
 

Threat 4: Simultaneous causality 
 
There is no problem in the case of having causality that runs from the regressor to 
the dependent variable. However, if the reverse also holds true, then there is a bias as 
OLS will include both directions of causality. The potential solutions are instrumental 
variables regression and the design of research (randomized control trial). 
 

Threat 5: Functional form misspecification 
 
If there is a non-linear relationship but we adopt a linear model in some sense, there 
is an omitted variable bias. Therefore, it is best to test whether a significantly different 
from zero non-linear coefficient exists. 
 

Threat 6: Inconsistency in the standard error 
 
To avoid inconsistency in the standard error, always adopt a heteroskedasticity 
robust standard error and ensure independent and identically distributed 
observations. 
 

Forecasting vs causal relationship  
 
The goal of developing a causal model is deriving the best description of behavior. 
The first concern is internal validity, and the second concern is external validity of the 
model. In contrast, for forecasting models, the models’ external validity is of greater 
importance than internal validity. To have the best forecast for the future, the 
requirements are good explanatory power, stability of results, and precision. 
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Restoring Internal Validity 
 

Sampling 
 
Definition: A method to prevent threats to internal validity of the model which 
consists of a representative sample of a population under study. 
 
Why? 

● Avoids sample selection bias 
● Random selection => i.i.d observations => consistent standard errors  

 
2 Essential Steps: 

1. Define population 
2. Decide how to derive that sample so that it is representative of the defined 

population  
 
2 main Sampling Techniques:  

1. Probability Sampling:   
● Random selection 

○ all members of the population have an equal chance of being 
selected in the sample  

○ Observations are independent 
● Representative 

○ Same distribution of characteristic as the population 
● Allows use of Probability Theory 

 
2. Non-Probability Sampling: Opposite of the previous technique 

● Non-random selection 
○ Members of the population do NOT have an equal chance of 

being selected 
● Representativeness is NOT guaranteed 
● Does NOT allow use of Probability Theory 



Panel Data 
 
Definition: Observing the same individuals repeatedly at different points in time. The 
data set is balanced when the duration observed is the same for all individuals, and 
unbalanced when the duration varies across them.  
 
Dealt with using a model that emphasizes the changes in two time periods.  

● Building a regression model in each time period and then finding the 
difference between them.  

● Only the variables whose values change over time remain in the model => 
enables us to study the effect of the independent variable’s change over time 
on  the dependent variable’s change over time. 

● Required assumption is much weaker than OLS conditional mean 
independence assumption: time difference in time-varying regressors 
should be unrelated to time difference in errors 

 
Advantages:  

● Changes in dependent and independent variables allows removing 
time-invariant & unobservable omitted variable bias 

 
Disadvantages:  

● Time-invariant variables drop out 
● Cannot remove time-varying  omitted variables bias 

○ Time difference in errors should still be unrelated to time difference in 
time-varying regressors 

●  Coefficients are constant over time 
 

Instrumental Variables (IV) 
 
Intuition: 
Variations in the independent variable consist of 2 parts:  

1. Endogenous variations: correlated with error term => OVB  
2. Exogenous variations: independent of error term => NO OVB 

 
The method of instrumental variables gets rid of OVB by isolating the exogenous 
variations from the endogenous ones.  
 
 



Two Stage Least Squares (TSLS): 
● 1st Stage: Predicts the independent variable with the help of an instrumental 

variable of choice.  
● 2nd Stage: Regresses the dependent variable on the predicted independent 

variable derived from the first stage. 
 
Example: IV = schoolreform 
1st Stage: 

 𝑒𝑑𝑢𝑐 = Π0 + Π1𝑠𝑐ℎ𝑜𝑜𝑙𝑟𝑒𝑓𝑜𝑟𝑚 + 𝑣
 𝑒𝑑𝑢𝑐 = 𝐸(𝑒𝑑𝑢𝑐|𝑠𝑐ℎ𝑜𝑜𝑙𝑟𝑒𝑓𝑜𝑟𝑚) = Π0 + Π1𝑠𝑐ℎ𝑜𝑜𝑙𝑟𝑒𝑓𝑜𝑟𝑚

 
2nd Stage: 
ln(labinc) =  β0𝑇𝑆𝐿𝑆 + β1𝑇𝑆𝐿𝑆𝑒𝑑𝑢𝑐 + 𝑒
 
Conditions for valid IV: 
 

1. RELEVANCE: IV should have some explanatory power for the endogenous 
variable.  
=> The correlation between the instrument and the independent variable must 
not be equal to zero 
=> Testable 

 
2. EXOGENEITY: IV must be unrelated with error terms.  

=> Correlation of the instrument with the error term must equal zero.  
=> Not testable 

 
OLS estimate > TSLS estimate because 
 
OLS Estimate: 

● NOT internally valid => upward bias 
● Exploits ALL variation in dependent variable 
● Externally valid for ALL variation in dependent variable 

 
IV Estimate: 

● Internally valid provided IV relevance & exogeneity 
● Exploits minor share of total variation in dependent variable 
● Externally valid for the variation in dependent variable explained by the IV 
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Quasi-experiments 
 

1. Experiment 
● Treatment assigned randomly 
● On purpose 
● Used in economics but more common in other disciplines (example: 

psychology) 
 

2. Quasi Experiment 
● Treatment assigned “as good as random” 
● NOT on purpose 
● More often used in economics 

 
3. Association (forecasting) 
● Treatment assigned non-randomly 
● NOT on purpose 
● Common in ALL disciplines 

 
Example: Marshmallow Experiment 
Description: Children (age 4 to 6) are led into a room with a marshmallow on a table. 
The child can eat the marshmallow or wait for 15 minutes after which a second 
marshmallow is rewarded. 
Findings: A minority eats the marshmallow immediately. One third of the remaining 
group manages to wait for 15 minutes. Delaying gratification predicts academic 
success and literacy. 
This is an association because there are NO treatment groups clearly defined and 
the action each child takes is not predetermined, thus NOT on purpose. 
 

Average treatment effect 
 
At an individual level, you can NEVER estimate a causal effect but with (Quasi-) 
experiments, you can estimate the average causal effect. 



 
Average Treatment Effect (ATE) = observed difference + unobserved difference 

● You need a random sample that is large enough 
● Random treatment assignment avoids selection bias 

 
Example: Mortality Experience vs Mammography Screening  

 

 
Difference Estimator: 

● The control and treatment group are the same before the treatment and there 
is quasi-random treatment assignment. 

● Typically, it is not the case in the quasi-experiments that the pre-treatment 
groups are identical. 

 

Experimental Variation & Threats to Internal and 
External Validity 
 
Experimental variation is usually at random, however observational variation is 
non-random.  

● The basic concern regarding causal inference is that you cannot observe two 
occurrences on the same individual at the same time 



○ i.e. an individual cannot simultaneously be in the control and treatment 
groups 

○  This is why an individual causal effect cannot be measured but it is 
possible to measure the average treatment effect. 

 
Threats to Internal Validity 
 
Threat 1: Failure to Randomize 

● Non-systematic ad-hoc rules entailing characteristics of name, nationality 
etc. should not be used to randomize the subjects 

● Should be done randomly so that control and treatment group are similar 
● The F-test can be done to ensure that the experiment is randomized 

 
Threat 2:  Failure to Follow Treatment Protocol 

● Partial Compliance: The failure to follow treatment protocol leading to lack of 
compliance by the subjects leading to violation of the conditional mean 
independence assumption. 

 
Solution: 

● Use random assignment as an instrumental variable  
● If there is data on the random assignment, but the data on actual treatment is 

missing it is also possible to estimate the Intention To Treat (ITT).  
● While both can be useful as both consider random assignment, IV shows the 

effect of receiving the treatment, but ITT shows the effect of being selected 
into the treatment group.    

 
Other Threats to internal validity 
Attrition:  Exclusion of some subjects from the sample due to non-random reasons. 
Example:  
Harmless: move out of NL is unrelated to treatment 
Harmful: exclude late-stage breast cancer 
 
Experimental Effects: Hawthorne and placebo effects. 
 
Solution: double blind 

● Neither the researcher nor the subjects know who is in the treatment and who 
is in the control group. 

 



Threats to External Validity  
 
Non-representative Sample 

● Example: Experimenting in region with high breast cancer rate 
 
General Equilibrium Effects 

● The experiment affects the behavior of a larger subset than initially 
anticipated  

● Example: increasing awareness about the issue studied 
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Binary OLS 
 
When a binary variable is used as the dependent variable, we use the numbers 0 
and 1 to model the choices (usually 1 is affirmative/positive)  
 

Linear Probability Model (LPM) 
 
Scatter plot LPM 
 

● Abnormal: all points are clustered horizontally around 1 and 0 
● It is of vital importance to incorporate heteroskedastic-robust estimates. 
● The predicted dependent variable of this model reflects the probability of Y=1. 
● The  reflects the change in probability Pr(Y=1) that occurs corresponding to β1

a unit change in variable X, keeping the other factors constant.  
● The predicted value of Y for a certain value of X can also reflect the conditional 

probability of the occurrence (Y=1) in large samples. 
○ The expectation is equivalent to the probability.  
○ E.g:  𝐸[𝑏𝑢𝑦] = 𝑃𝑟(𝑏𝑢𝑦 = 1)
○ The expected value of the dependent variable is the conditional 

probability that Y=1 



 
 

Probit Model 
 
Problem: The LPM can sometimes observe theoretically unfeasible probabilities that 
do NOT fall in the range of 0%-100%. 
 
Probit models: 

● Use the standard normal distribution function to ‘bend the OLS’ so that it falls 
in the plausible range.  

● Considered good for binary regressor as it is limited in the cumulative 
probability range from 0% to 100%.  

Approach: 
● Firstly, model z-scores as a linear function of the regressors, and, assuming 

z-scores follow the standard normal distribution, the corresponding 
probability is realized.  

 𝑧 = β0 + β1𝑋
 Φ(𝑧) = Φ β0 + β1𝑋( )

 𝑃𝑟 = Φ β0 + β1𝑋( )
 



 
 
Note: The coefficient of the probit model cannot be interpreted directly. From the 
coefficient, we can only interpret its sign and significance, NOT size  

● i.e. whether it increases or decreases the likelihood (probability). 
●  If X increases by 1 unit, then z increases by  , and from that, a non-linear β1

reference can be made about the probit =>indirect model.  
 
The effect size can be easily computed by finding the conditional expectation of Y for 
a given value of X and then comparing the conditional expectation of Y from the 
initial value of X and finally taking the difference. 
 
Example: 

 𝑃𝑟(𝑏𝑢𝑦) = Φ(𝑧) = Φ − 4. 1 + 0. 1 𝑎𝑔𝑒( )
Age 50: z=0.9, Pr(buy)=82% 
Age 51: z=1.0, Pr(buy)=84% 
When age increases by 1 from 50 to 51, Pr(buy) increases by 2% 
 

Logit Model 
 
Logit and probit models are very similar and produce almost the same results, only in 
the case of extreme values of X do their values deviate substantially.  
 
The logit model is an alternative to the probit model as both models indirectly 
estimate the probability. In the case of the logit model, the logistic function is used:   



 
 𝑃𝑟(𝑌) = 11+𝑒−𝐿
 𝐿 = β0 + β1𝑋

 
● Resides on the foundation of odds: odd is defined as probability of occurrence 

divided by probability of non-occurrence.  
● The logistic function is the natural logarithm of odds. 

 

 𝑙𝑛(𝑜𝑑𝑑𝑠) = 𝑙𝑛 11+𝑒− β0+β1𝑋( ) × 1 − 11+𝑒− β0+β1𝑋( )( )−1⎡⎢⎢⎣ ⎤⎥⎥⎦ = β0 + β1𝑋
 
It is important to realize like probit models, logit models do NOT have constant effect 
sizes, here the effect size is more substantial in the middle of the distribution rather 
than extremes. 
 

Comparison, Maximum Likelihood, and Extensions 
 
The OLS model attempts to minimize the square of the residuals, whilst for the logit 
and probit models there is an attempt to maximize the likelihood efficiently.  
 
Multinomial Variables 

● Can take on more than just two values compared to binary variables.  
 
Models without natural ordering:  

● Use multinomial logit and probit 
● E.g. commuting preference: car, bike, public transport, …  

 
Models with specific ordering.  

● It is also possible to have ordered choices wherein the options themselves 
have some inherent ranking.  

● Adopt ordered probit.  
● Cannot replace ‘ranking’ with numbers 
● E.g. How is your health in general? Very bad / Bad / Fair / Good / Very good 
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Time Series 
 

Introduction 
 
Definition: A sequence observed and recorded at successive points in time with 
equal intervals in between.  
 
Time series analysis: Allows us to study the properties of the time series, the 
interaction between time series, or make forecasting of future occurrences.  

● Point Forecast: When a single forecast is made by time series 
● Interval Forecast: When there is some range of the forecasted variable  

 
While a cross section is observed only once. 
 
Notation 
 

 is a value of Y at time t (similarly ), t=1,2, … ,T 𝑌𝑡 𝑋𝑡
 is time series of Y 𝑌1, 𝑌2,  ...  , 𝑌𝑇{ }

 is a time series regression 𝑌𝑡 = β0 + β1𝑋𝑡 + ε𝑡
The last component, also known as shock/news, is unforecastable by the model and 
usually marks sudden or unpredictable events.  
 
Note: When performing a time series analysis, always sort the data from oldest to 
newest, otherwise you might make an erroneous mistake such that you might end 
up predicting the past. 
 
In a graph, the correct way implies that the prior (old) periods would come to the left 
and the more recent ones on the right. Furthermore, rather than simply noting that 
the trend is upwards or downwards one must think whether it is significantly and 
relevantly upwards or not.  



Notation of lags 
 

 is a value of Y at time t 𝑌𝑡
First lag:  is a value of Y at time t-1 𝑌𝑡−1

 lag:  is a value of Y at time t-j 𝑗𝑡ℎ 𝑌𝑡−𝑗
A first-order autoregression:  𝑌𝑡 = β0 + β1𝑌𝑡−1 + ε𝑡
Autoregression means that this is a regression of Y on itself and first-order means 
that we use first lag.  
 
Notation of Differences 
 
First difference:  ∆ 𝑌𝑡( ) = 𝑌𝑡 − 𝑌𝑡−1
Double first difference:  ∆2 𝑌𝑡( ) = ∆∆ 𝑌𝑡( ) = ∆ 𝑌𝑡 − 𝑌𝑡−1( ) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2
Yearly difference:   ∆12 𝑌𝑡( ) = 𝑌𝑡 − 𝑌𝑡−12
First (natural) log-difference:  ∆ 𝑙𝑛𝑌𝑡( ) = 𝑙𝑛𝑌𝑡 − 𝑙𝑛𝑌𝑡−1
In this course, we will use the log differences to determine the growth rates. 
 
Note: The subscript and superscript differ in their interpretation. 

● Superscript (to the power) denotes the first difference that replicated j times 
● Subscript denotes the difference in time t and t-j 
● The double first difference above can be stated otherwise as a growth in 

growth (usually for exponential variables) 
 

Annualized vs Annual Growth 
 
Annualized Growth:  

● The growth per given period (other than year) is scaled to year 
 100 × 𝑙𝑛 𝑌𝑡( ) − 𝑙𝑛 𝑌𝑡−1( )( ) × 12

 
Annual Growth:  

●  The difference from one year to the other 
 100 × 𝑙𝑛 𝑌𝑡( ) − 𝑙𝑛 𝑌𝑡−12( )( )

 
 
 



Example:  
● A change of some variable over a quarter (comparing last quarter with this 

quarter) could be multiplied by 400 (4 times 10: 4 quarters, 100 stands for 
percentage), and the result is annualized growth.  

● Meanwhile, the change between this year's quarter compared to last year’s 
quarter directly computed is annual growth. 

 

Autocorrelation 
 
Correlation:  ρ = 𝑐𝑜𝑣 𝑋,𝑌( )𝑣𝑎𝑟 𝑋( )×𝑣𝑎𝑟 𝑌( )
 
First-order autocorrelation:  ρ1 = 𝑐𝑜𝑣 𝑌𝑡,𝑌𝑡−1( )𝑣𝑎𝑟 𝑌𝑡( )×𝑣𝑎𝑟 𝑌𝑡−1( )
 

 order autocorrelation:  𝑗𝑡ℎ ρ𝑗 = 𝑐𝑜𝑣 𝑌𝑡,𝑌𝑡−𝑗( )𝑣𝑎𝑟 𝑌𝑡( )×𝑣𝑎𝑟 𝑌𝑡−𝑗( )
 
Note: As we increase the lag, the sample gets smaller as some observations have to 
be dropped out. 
 
Partial Autocorrelation 
 

● An important concept that helps us identify an autoregression model.  
● The outcome of a regression model with a time series as the dependent 

variable, and its jth lag as the regressor. 
 
For  ,  is the first-order partial autocorrelation and  is 𝑌𝑡 = β0 + β1𝑌𝑡−1 + β2𝑌𝑡−2 + ε𝑡 β1 β2
the second-order partial autocorrelation. 
 
Autocorrelation and partial autocorrelation features 

● Values are between -1 and +1 
● They usually decrease in magnitude as the lag length increases. However, this 

is NOT necessarily true especially if one considers the case of seasonality.  
● The 5% critical value for testing whether the coefficient is 0 is ±1.96 divided by 

the square root of the number of observations (T). 
 
 



Autocorrelated Errors 
 
Autoregressive Form:  ε𝑡= ρ1ε𝑡−1 + 𝑢𝑡
 
If we have  then we can estimate from the equation  using OLS.  ε𝑡 ρ ε𝑡= ρ1ε𝑡−1 + 𝑢𝑡
 
If we don't have  then we can estimate  first. This can be done by regressing ε𝑡 ε̂𝑡

 to get estimates of  and , and then obtaining  using the 𝑌𝑡 = β0 + β1𝑋1 + ε𝑡 β0 β1 ε̂𝑡
equation  ε̂𝑡 = 𝑌𝑡 −  β0 − β1𝑋𝑡
 
The Durbin-Watson Statistic 
 
Tests autocorrelated errors 

 𝑑 = ∑ ε𝑡−ε𝑡−1( )2
∑ε𝑡2

Rule of Thumb: d<1 is a warning for a positive autocorrelation. 
 : Positive autocorrelation 𝑑 < 𝑑𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

 : Inconclusive 𝑑𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 < 𝑑 < 𝑑𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
 : Negative autocorrelation 𝑑 > 𝑑𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

 
Note: If the errors are autocorrelated, then the standard errors of the model turn out 
wrong from the standard approach. The Heteroskedasticity and Autocorrelation 
Consistent (HAC/Newey-West) variance can be used to get the correct standard 
errors. 
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Dynamic Models 
 

Autoregressive Models (AR) 
 

● When using the past observations of the variable itself in a regression.  
● The order of an AR is the maximum lag of the equation (p), and may differ 

from the number of parameters. 
 
P-th order autoregressive model (AR(p)): 

 𝑌𝑡 = β0 + β1𝑌𝑡−1 + β2𝑌𝑡−2 +... + β𝑝𝑌𝑡−𝑝 + ε𝑡
 
For the AR(p) the parameter  is the p-th order partial autocorrelation. β𝑝
 
Long-Term Value 
 
Long-term expected value of an AR model: 

● Assumption 1:   and  are the observations from the same distribution, and 𝑌𝑡 𝑌𝑡−1
hence .  𝐸 𝑌𝑡 [ ] = 𝐸 𝑌𝑡−1[ ]

● Assumption 2: expected value of error term is zero.  
● Derive the long-term expected value:  𝐸 𝑌𝑡 [ ]= β0/ 1 − β1( )

(where  is the intercept or constant and  is the coefficient of ) β0 β1 𝑌𝑡−1
 
Autocorrelation 
 
Correlation between  and  given AR(1) model: 𝑌𝑡 𝑌𝑡−1
  𝑐𝑜𝑟𝑟 𝑌𝑡 ,  𝑌𝑡−1( ) = β1
  𝑐𝑜𝑟𝑟 𝑌𝑡 ,  𝑌𝑡−2( ) = β12
  𝑐𝑜𝑟𝑟 𝑌𝑡 ,  𝑌𝑡−𝑗( ) = β1𝑗
 



Partial autocorrelation is useful for higher order autocorrelation 
 
Note: choose AR model for the highest significant order found from the partial 
autocorrelation! 
Note for STATA: if you want to regress  on , you lose the first observation. The 𝑌𝑡 𝑌𝑡−1
larger the order of the model, the more observations are lost from the sample. 
 
Information Criteria 
 
Note: When the number of parameters in a model are increased the  tends to 𝑅2
increase, this, however, does not reflect an increase in the goodness of fit.  
 
These following measures greatly assist in balancing the fit and the number of 
parameters: 

 𝐴𝑘𝑎𝑖𝑘𝑒 𝐼𝐶 (𝐴𝐼𝐶) = −2𝑙𝑛(𝐿)+2𝑘𝑇
 𝑆𝑐ℎ𝑤𝑎𝑟𝑧 𝐼𝐶 (𝐵𝐼𝐶) = −2𝑙𝑛(𝐿)+𝑘×𝑙𝑛(𝑇)𝑇

 
L: the likelihood (a function of the estimated variance of the errors)  
K: the number of parameters including the constant  
T: the number of observations (periods) 
 
When fit gets better,  goes down because k goes up − 2𝑙𝑛(𝐿)
 
You can pick which method to use but keep in mind that the BIC measure gets 
increasingly stricter when the number of observations is bigger than 8.  
 

● The lowest value of AIC and BIC is the most desired because we are 
interested in the minimal number of parameters while maximizing the fit.  

● AIC and BIC can give different results for different models => possible to have 
several models.  

 

Finite Distributed Lag Model 
 
Finite Distributed Lag model of Order q:  

 𝑌𝑡 = α + β0𝑋𝑡 + β1𝑋𝑡−1 +... + β𝑞𝑌𝑡−𝑞 + ε𝑡
 



where p denotes the maximum lag of the dependent variable itself and q denotes 
the maximum lag of independent variable X.  
 

 = the distributed-lag weight or s-period delay multiplier β𝑠
=> It indicates the effect of the change in  on .  𝑋𝑡−𝑠 𝑌𝑡
 
j-Period Interim Multiplier: 

● The effect of a permanent change in X on Y after j periods.  
● It carries on through all the parameters up until and including the j-th one 

 
The Total Multiplier: 

● The effect until the maximum lag q of the model 
● The sum of all   β

 
j-Period Delay Multiplier: 

● The  that represents the j period lag β
 
Example: 
What are the 2-period delay multiplier, the 2-period interim multiplier and the total 
multiplier?  

 

 
 

Autoregressive Distributed Lag Models (ARDL) 
 
ARDL model of order (p, q) 

 𝑌𝑡 = β0 + β1𝑌𝑡−𝑖 +... + β𝑝𝑌𝑡−𝑝 + δ0𝑋𝑡 + δ1𝑋𝑡−1 +  ... + δ𝑞𝑋𝑡−𝑞 + ε𝑡
 
Long-Term Value 
 
2 steps: 

1. Long term expectation for AR(p) model:  𝐸 𝑌𝑡[ ] = β01−β1−β2−...−β𝑝( )
2. Extend to ARDL(p,q) model:    𝐸 𝑌𝑡[ ] = β0+δ0𝑋1+δ1𝑋𝑡−1+...+δ𝑞𝑋𝑡−𝑞1−β1−β2−...−β𝑝( )



(where  denotes the parameter of X.) δ
 
The long term effect of a permanent change in X by 1 on Y is reduced to: 

 𝐸 𝑌𝑡, 𝐴𝑅[ ] = δ0+δ1+...+δ𝑞1−β1−β2−...−β𝑝( )
 
Short-Term Effects ARDL 
 

● Not easy to see 
 
Error Correction Format: 
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Forecasting 
 

Moving Average Models (MA) 
 

● Regresses the dependent variable  on the error term and the lags of the 𝑌𝑡
error. 



 𝑌𝑡 = β0 + ε𝑡 + θ1ε𝑡−1 + θ2ε𝑡−2 +... + θ𝑞ε𝑡−𝑞
 

● White Noise: When we assume that the expected value of  equals to 0 and ε
the error terms (news) are uncorrelated. .  𝐸 ε𝑡[ ] = 0,  𝐸 ε𝑡2⎡⎢⎣ ⎤⎥⎦ = σ2,  𝐸 ε𝑡,  ε𝑡−𝑖[ ] = 0

 
This model represents lags of  instead of : ε𝑡 𝑋𝑡

● This means that errors affect Y with some lag in between 
● The autocorrelation abruptly stops after q term, while for the AR model 

autocorrelations gradually die out. 
 
ARMA (p,q) Model 
 

● Regresses the dependent variable  on Y up to p lags and on the error term 𝑌𝑡
up to q lags.  

 𝑌𝑡 = β0 + β1𝑌𝑡−1 +... + β𝑝𝑌𝑡−𝑝 + ε𝑡 + θ1ε𝑡−1 +... + θ𝑞ε𝑡−𝑞
 
Further Extension: ARIMA (p,d,q) 
 

● This can be further adopted to include the difference approach. 
  ∆𝑑𝑌𝑡 = β0 + β1∆𝑑𝑌𝑡−1 +... + β𝑝∆𝑑𝑌𝑡−𝑝 + ε𝑡 + θ1ε𝑡−1 +... + θ𝑞ε𝑡−𝑞

where d is the degree of ‘differencing’ and I is integration of order d. 
 

Forecasting 
 
From an AR(1) Model: 

 



 

 
 
Important Notes: 

● It is important to ask: what do I know now at time T to predict ? 𝑌𝑡+1
● For a fact you do NOT know  thus when calculating , for example, you 𝑌𝑡+1 𝑌𝑡+2

can replace by its prediction . 𝑌𝑡+1 β0 + β1𝑌𝑡
● Example: if today is Tuesday and you want to predict something for Saturday, 

you need to predict for ALL the day before (Wednesday, Thursday, and Friday). 
● When forecasting the expected value of the future of the dependent variable, 

the expected value of news (error term ) is always zero, as news is unforeseen ε
and unpredictable. 

 
How accurate are forecasts? 
 

● Forecast Error: the difference between the true observed value of Y in the 
future period and the forecasted value of Y in the future period. 

 
The mean squared forecast error (MSFE) and the root of it (RMSFE) can be 
represented as follows: 

 𝑀𝑆𝐹𝐸 = 𝑡=𝑇+1
𝑇+𝑛∑ 𝑌𝑡−𝑓𝑡( )2

𝑛
 

 𝑅𝑀𝑆𝐹𝐸 = 𝑀𝑆𝐹𝐸
 
Y: true value  
f: forecasted values 



Lowest (R)MSFE = best forecasting model! 
 
Factors of Uncertainty: 

1. Error terms 
2. Parameter estimates 
● Implies MSFE out-of-sample>MSE in-sample 

 

Forecast Intervals 
  
Since we can never be 100% certain when making forecasts, we should consider for 
example 95% forecast interval. 1-period forecast interval of 95% is given by: 

 𝑌𝑇+1 − 1. 96 × σ;  𝑌𝑇+1 + 1. 96 × σ ⎡⎢⎣ ⎤⎥⎦
 
The Variance 
 
For AR(1) this is simply: 

 𝑌𝑇+1 = β0 + β1𝑌𝑇 + ε𝑇+1
 𝑉𝑎𝑟 𝑌𝑇+1 − 𝑓𝑇+1( ) = 𝑉𝑎𝑟 ε𝑇+1( ) = σ2

 
However, as we are making predictions for further in the future the variance 
increases (interval becomes larger) and uncertainty increases.  
The example of forecasting multiple steps with AR(1): 
 

  
 
Pseudo-Out-of-Samples 
 

● When you take some part of the data and reserve it for further analysis. 



● The sample of the time series can be divided, this does not necessarily need to 
be in two halves as the data is not cross-sectional and varies substantially 
throughout.  

● The first portion of the sample is used to make forecasts using the models in 
an attempt to see if the model can accurately predict the points of the second 
part of the data. 

 

Granger causality 
 

● Correlation between A and B implies A=>B, or B=>A, or both. 
● An association of causality with probability  
● NOT a synonym for true causality as both variables may be affected by 

another time-varying variable. 
● Time-Series: ONLY forward, thus is very complicated 

 
(Semi) Solution: 

● Apply different treatments to the same subject 
● BIG ceteris paribus assumption 
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Non-Stationarity 
 
Up until now, we assumed the time series displayed stationarity. Now, we consider 
non-stationarity (inconsistent mean or variances overtime, for example when there’s 
a trend).  
 
Spurious Regression 
 

● When there should not be a relationship between variables, however, we 
obtain one that is significant and positive for one part of the sample and 
significant negative for the other part of the sample. 



●  NOT accounting for the non-stationarity could lead to spurious conclusions 
about the existence of the relationship between variables. 

 
Indicators of Non-Stationarity: 

● when applying the AR(1) model and the coefficient is equal to 1.  
● Very large t-statistics of the coefficient of model, if it is the case this could be a 

sign that there is no t-distribution underlying this result. 
●  It is possible that by including a trend variable the effect of time will be 

isolated and the significance of the spurious relationship will disappear.   
 

Random walk 
 

● When each new data point is determined by the error term.  
● This happens when the coefficient of AR(1), which is the slope coefficient, is 

equal to 1.  
 , where .  𝑌𝑡 = β1𝑌𝑡−1 + ε𝑡 β1 = 1

 
● When further simplified to the first order, the 0th observation is simply a sum of 

all the error terms of different periods.   
 𝑌𝑡 = 𝑌0 + ε𝑡 + ε𝑡−1 + ε𝑡−2 +... + ε1

 
● When plotting the date, the line does NOT return to a constant mean, it stays 

below/above for a long period of time. 
 
The Expected Value: 

  𝐸 𝑌𝑡( ) = 𝐸 𝑌0( ) + 𝐸 𝑖=1
𝑡∑ ε𝑖( ) = 𝑌0 + 0 = 𝑌0

This implies that there is NO better prediction for the future than the value of today, 
since the expected value of the error term is equal to zero. 
 
The Variance:  

● The more errors, the more variance 
● Non-stationarity implies that there is a new variance for every observation. 

 𝑉𝑎𝑟 𝑌𝑡( ) = 𝑡σ2
 

 



Drift (trends) 
 

● When there is a constant term or the intercept .  α
● The model is then: 

 𝑌𝑡 = 𝑡α + 𝑌0 + ε𝑡 + ε𝑡−1 + ε𝑡−2 +... + ε1
 

The Expected Value: 
● Non-stationarity implies that there is a new expected value for each 

observation 
   𝐸 𝑌𝑡( ) = 𝑌0 + 𝑡α

 
The Variance: 

● Same as the one without drift  
 𝑉𝑎𝑟 𝑌𝑡( ) = 𝑡σ2

 

Dickey-Fuller Test 
 

● Important: standard statistical tools are not applicable as mean and variance 
are not constant over time in this case 

● Also known as a unit root test  
● Test if AR coefficient =1 β

 
The model can be manipulated as follows where the growth of the dependent 
variable is regressed against the lag of the dependent variable, resulting in a new 
parameter : γ

 𝑌𝑡 = β 𝑌𝑡−1 + ε𝑡
 𝑌𝑡− 𝑌𝑡−1 = β 𝑌𝑡−1− 𝑌𝑡−1 + ε𝑡

 ∆𝑌𝑡 = γ𝑌𝑡−1 + ε𝑡
where   γ = β − 1
 
Hypotheses:  

 𝐻0:  γ = 0 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘 (β = 1)
 𝐻1:  γ < 0 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (β < 1)

 
Versions of The Dickey-Fuller Test: 

1. DF test 1 (no intercept, no trend):    ∆𝑌𝑡 = γ𝑌𝑡−1 + ε𝑡



2. DF test 2 (intercept, no trend):    ∆𝑌𝑡 = α + γ𝑌𝑡−1 + ε𝑡
3. DF test 3 (intercept and trend):    ∆𝑌𝑡 = α + λ𝑡 + γ𝑌𝑡−1 + ε𝑡

 
When to Use each Model: 

● DF test 1 is used when the model is around the mean of 0.  
● DF test 2 is used when the model is around another mean which a constant 

number different than 0.  
● DF test 3 is used when the model trends around a linear trend. 

 
Note: It is important to choose the right test to perform as the critical values for each 
type are different. Mind that the test is one-sided.  
 
The critical values at 5% are:  

● DF1: -1.95 
● DF2: -2.86 
● DF3:-3.41 

 
If the test statistic is less than the critical value, which means if the DF Test is to the 
left of the critical value, we reject the null hypothesis, hence there is no random walk 
detected and the data is stationary.  
 
Augmented Dickey-Fuller Test (ADF) 
 

 ∆𝑌𝑡 = α + γ𝑌𝑡−1 + δ1∆𝑌𝑡−1 + δ2∆𝑌𝑡−2 +... + ε𝑡
 

Solutions to Non-Stationarity 
 

1. Detrending 
● If there is a deterministic trend and no unit root, then including an additional 

regressor that reflects the time period will account for the trend part. 
● Steps: 

1. Regress Y on time (T) and a constant. This estimates the trendline. 
Subtract this to get the detrended Y. 

2. Repeat for X. 
3. Regress detrended Y on detrended X. 

 
2. Differencing 
● If the trend is stochastic (unit root) 



● taking the first differences: 
 𝑌𝑡 = β0 + 𝑌𝑡−1 + ε𝑡

 𝑌𝑡 − 𝑌𝑡−1 = β0 + 𝑌𝑡−1 + ε𝑡 − 𝑌𝑡−1
 ∆𝑌𝑡 = β0 + ε𝑡

 

Breaks 
 

● The regression model changes over the course of the sample.  
● After a break (denoted ) we have the same variables, but different τ

parameters: 
 ,  when  𝑌𝑡 = β0 + β1𝑌𝑡−1 + δ1𝑋𝑡−1 + ε𝑡 𝑡 < τ

 ,  when  𝑌𝑡 = β'0 + β'1𝑌𝑡−1 + δ'1𝑋𝑡−1 + ε𝑡 𝑡 ≥ τ
 

● If we want to examine whether there was a break we must adopt a dummy 
variable that will take on a value of 0 if , and a value of 1 when  in the 𝑡 < τ 𝑡 ≥ τ
regression following regression:  

 𝑌𝑡 = β0 + β1𝑌𝑡−1 + δ1𝑋𝑡−1 + 𝐷γ0 + 𝐷γ1𝑌𝑡−1 + 𝐷γ2𝑋𝑡−1 + ε𝑡
 

At time  :  𝑡 < τ 𝑌𝑡 = β0 + β1𝑌𝑡−1 + δ1𝑋𝑡−1 + ε𝑡
At time   :  𝑡 ≥ τ 𝑌𝑡 = β0 + γ0( ) + β1 + γ1( )𝑌𝑡−1 + δ1 + γ2( )𝑋𝑡−1 + ε𝑡
 

Chow Break Test  
 

● This is performed when we know the date of the break 
● Using the dummy variables we aim to test if the new parameters ( , , ) are γ0 γ1 γ2

significant or NOT. 
 

Quandt Likelihood test (QLR) 
 

● This is used instead if we do not know the exact date of the break and are 
looking for it. 

● Note: you cannot perform QLR to find the date of the structural break and then 
test again with Chow test.  

● The break is around the maximum F-value. 
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Volatility Clustering 
 
All the models incorporated up till now have assumed homoskedasticity, meaning 
the variance of the error term is equivalent at any time t.  

● Robust standard errors (HAC) adopted when this does not hold 
● Now we must also consider the time on which the error term can vary! 

 

ARCH Model 
 

● autoregressive conditionally heteroskedastic models  
● The size of error terms is a high determinant for the variance 

 
Default:  σ𝑡2 = α0
Extension:  σ𝑡2 = α0 + α1ε𝑡−12
This extension implies that future variance can be predicted by past errors. 
 
Simple Model of Returns 
 

,   where . 𝑌𝑡 = β0 + ε𝑡 ε𝑡 ∼ 𝑁 0; σ𝑡2( )
 
Previously, we did not have to worry about the  term as it was constant, however, σ𝑡2
now we drop this assumption to model  as a function of past errors: σ𝑡2

 . σ𝑡2 = α0 + α1ε𝑡−12
 
The model with constant variance usually displays normal distribution in very large 
samples. The ARCH model on the other hand has relatively thicker tails with 
correlated extreme errors and the mean is highly peaked. 
 



Test if Variance is ARCH 
 
We can use the hypothesis testing to test whether the variance is indeed the ARCH 
variance.  

 
Default:  (constant variance) σ𝑡2 = α0
ARCH(1):  (variance is changing) σ𝑡2 = α0 + α1ε𝑡−12
 
It is important to note that we do not observe the , therefore we use the squared σ𝑡2
residuals instead: 

. ε𝑡2 = α0 + α1ε𝑡−12
 
With that, we want to know if the  is significant. α1
 
To estimate an ARCH model the maximum likelihood method is used that 

simultaneously estimates  and chooses the parameters ( , , ) that fit the data σ𝑡2 β0 α0 α1
most (use Stata to solve that). 
 

GARCH Model 
 
If we believe that the variance is not only dependent on the square of the error terms 
but also on the lags of  we can add them into the model, which then becomes the σ𝑡2
GARCH model, which stands for Generalized ARCH model. 
 It is a variance version of ARDL (distributed lag model): 
 
ARCH(1):   σ𝑡2 = α0 + α1ε𝑡−12
GARCH(1):  σ𝑡2 = α0 + α1ε𝑡−12 + φ1σ𝑡−12
 
The long-term unconditional variance can be computed via the formula:  

α01−α1−φ1
Note: it is possible to increase the GARCH(1,1) to GARCH(p,q) model by adding more 
autoregressive terms as well as lag terms, however, it is rarely done in practice. 
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