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Applied Econometrics – masters
course – lecture week 1
Econometric Models
Econometric models have two main ingredients.

They specify a relationship of interests, for example the relationship between Y
as a function of X: .𝑌 =  𝐹(𝑥)

They model the uncertainty of a relationship, whose value if not known by
econometricians : .𝑌 =  𝐹(𝑥) +  𝑒
Random variable
This refers to a function X(.) that associates a unique number with every possible
outcome of some sort of trial. Random refers to the period before the event takes
place. These variables take two forms.

Discrete – one can count values of all the potential outcomes, e.g., only integer
values.
Continuous – one cannot count these values, e.g., any number.

Example: flipping a coin. X would be a function that maps heads into the number 1
and tails into 0. X(heads) = 1 and X(tails) = 0.

Randomsampling: randomness in the process of information retrieval.
Randomised controlled trials: randomness in the assignment of a “treatment” to a
person in the sample.

Probability distribution
The function F(x) marks the probability of our random variable X taking on each of its
possible outcomes. In the example below the probability that it is smaller or equal
than the value x: 𝐹(𝑥) =  𝑃(𝑋 ≤  𝑥)



Random sampling
The selection of individual information retrieved of population N is done in a random manner.
This means that the information obtained from one individual is independent of the other
information we obtain from another, e.g. because Janna was selected tells us nothing about
whether her friend Nikita will be selected.

If the true sample is represented by I1 * X1, I2 * X2, I3 * X3, ..., In * Xn, our sample is a collection of
those individuals, where Ii=1 if person i is selected and Xi is the information obtained from
person i.

In a simple random sample, the probability of each individual being chosen is given by P(Ii=1)
= 1/N.

From sampling to the population
The reason we use a sample is to gain insight of the overall distribution of a
population without gaining information on each individual. From the sample we can
calculate the sample mean and the sample variance Var ( ). This in itself doesn’t𝑋 𝑋
tell us much about the population; to aid us we have to make assumptions.𝑋 =  𝑖=1

𝑁∑ 1𝑁( )𝑥𝑖
Var( ) = ; where Var(Xi) is the population variance (which is sometimes𝑋 𝑉𝑎𝑟 𝑋𝑖( )𝑁

denoted as ).σ𝑥2
Suppose the expectation or expected value of the population can be calculated as
follows: 𝐸 𝑋( ) = 𝑖=1

𝑚∑ 𝑃(𝑋 = 𝑥𝑖)𝑥𝑖
where P(X=xi) is the probability distribution of our random variable X. This is a
function to calculate the probability of each outcome of x.

With random sampling and a large sample meets established criteria for a “good”𝑋
estimator E[X]. If we collect an infinite number of large samples, measure for each𝑋
sample, then the fraction of samples with ≈ E[X] will tend to 1. It is in this sense that𝑋
we call a consistent estimator for E[X]. Mathematically this relationship is given by:𝑋 𝑋( ) = 𝐸 𝑋[ ]



Recall that Var( ) = . Therefore, a smaller sample variance is associated with𝑋 𝑉𝑎𝑟 𝑋𝑖( )𝑁
an increasing sample size or a lower population variance. Generally, it is good if an
estimator has a small sampling variance.

There are some properties properties associated with with expectations, which can
be used:
E[X+Y] = E[X] + E[Y]
E[aX] = aE[X]
E[XY] = E[X]E[Y ]; only when the variables X and Y are independent

From variance to standard error
In practice, we rely on the standard error to represent the variability of our data. The
standard error of the sample mean is given by:𝑆𝐸 𝑋( ) = σ𝑥𝑁
As is the standard deviation of the population, we do not know its value.σ𝑥 
Instead, we estimate it using a sample estimate with:

𝑆 𝑋𝑖( ) =  1𝑁 𝑖=1
𝑁∑ 𝑋𝑖 − 𝑋( )2

Our estimated standard error is then given by:𝑆𝐸̂ 𝑋( ) = 𝑆 𝑋𝑖( )𝑁
From our sample we want to test hypotheses about underlying population
parameters. Currently this means using to learn about E(Xi). This is done by𝑋
performing a t-test on the hypothesised value . We reject the null hypothesis if it isµ
significantly unlikely to be true, given our sample. The Central Limit Theorem enables
this to be done on hand of a standard normal distribution.𝑡 µ( ) = 𝑋− µ( )𝑆𝐸̂ 𝑋( )
Data structures
Cross-sectional: many agents (individuals, firms, households) for whom 1
observation is available (at one moment in time).
Time Series: many observations of only one agent at various points in time.



Panel Data: many agents are observed over various points in time. A collection of
cross-sectional observations over time. (Time series and Cross-sectional data are
special cases of panel data, existing only in one of the two dimensions).
Clustered Data: many grouped agents where outcomes are correlated within
groups. Interdependence is not modelled.
Spatial Data: observations in close physical proximity have correlated outcomes.
Unlike clustered data, this interdependence is modelled explicitly.

Joint distributions
So far, we have had one data point per individual from a population characterised
by a probability distribution: 𝐹(𝑥) =  𝑃(𝑋 ≤  𝑥).
Instead of one data point per individual, often we have 2 or more data points for
each individual. Suppose the observations for N individuals are then a collection of
pairs (Y1, X1), (Y2, X2), (Y3, X3), … , (YN, XN); where the probability distribution is given by𝐹(𝑥, 𝑦) =  𝑃(𝑋 ≤  𝑥,  𝑌 ≤  𝑦 ).  
Any data pairs taken from this probability function would be characterised by the
means E[X] and E[Y], as well as their variances Var(X) and Var(Y). The covariance of
two variables is a basic measure to describe their relationship. It tells us whether X
and Y deviate from their respective means E[X] and E[Y] together or not.𝐶𝑜𝑣(𝑌,  𝑋) =  𝐸[(𝑋 −  𝐸[𝑋])(𝑌 −  𝐸[𝑌])]
To compare relationships between pairs of variables, we can normalise the
covariance to get the correlation.

; where −1 ≤ Corr(Y, X) ≤ 1𝐶𝑜𝑟𝑟 𝑌, 𝑋( ) = 𝐶𝑜𝑣 𝑌,𝑋( )𝑉𝑎𝑟 𝑋( )𝑉𝑎𝑟 𝑌( )
Conditional expectation
This asks what the expected value of Y is conditional on a given value of X. e.g. if Y is
discrete with possible outcomes of y1, y2, …, yk then the expectation is the sum of the
probabilities of each outcome occurring multiplied with the value of the outcome.𝐸[𝑌|𝑋] =  𝑦1𝑃(𝑌 = 𝑦1|𝑋) +  𝑦2𝑃(𝑌 = 𝑦2|𝑋) +  … +  𝑦𝑘𝑃(𝑌 = 𝑦𝑘|𝑋)



Law of iterated expectation (lie)
𝐸[𝑌] =  𝐸[𝐸[𝑌|𝑋]]

This law enables the calculation of the E[Y] using the following formula:𝐸[𝑌] =  𝐸[𝑌|𝑋 = 𝑥1]𝑃(𝑋 = 𝑥1) +  𝐸[𝑌|𝑋 = 𝑥2]𝑃(𝑋 = 𝑥2) +  … +  𝐸[𝑌|𝑋 = 𝑥𝑚]𝑃(𝑋 = 𝑥𝑚)
Independence
A random variable Y is independent from another variable X if knowing the value of X
does not affect your expectation of what Y will be. Mathematically this means the
best guess at the expected value of Y given X is simply the expected value of Y.

E[Y|X] = E[Y]

If all three hold, then we can prove that the Cov(Y, X) =0.

𝐶𝑜𝑣 𝑌, 𝑋( ) = 𝐸⌊𝑋𝑌⌋ − 𝐸⌊𝑋⌋𝐸⌊𝑌⌋
= 𝐸⌊𝐸⌊𝑋𝑌|𝑋⌋⌋ − 𝐸⌊𝑋⌋𝐸⌊𝐸⌊𝑌|𝑋⌋⌋ (by LIE)
= 𝐸⌊𝐸⌊𝑋|𝑋⌋𝐸⌊𝑌|𝑋⌋⌋ − 𝐸⌊𝑋⌋𝐸⌊𝐸⌊𝑌|𝑋⌋⌋ (by independence)
= 𝐸⌊𝑋𝐸⌊𝑌|𝑋⌋⌋ − 𝐸⌊𝑋⌋𝐸⌊𝐸⌊𝑌|𝑋⌋⌋ (because )𝐸⌊𝑋|𝑋⌋ = 𝑋
= 𝐸⌊𝑋𝐸⌊𝑌⌋⌋ − 𝐸⌊𝑋⌋𝐸⌊𝐸⌊𝑌⌋⌋ (by independence)
= 𝐸⌊𝑋⌋𝐸⌊𝑌⌋ − 𝐸⌊𝑋⌋𝐸⌊𝑌⌋ (because is constant)𝐸⌊𝑌⌋ 
= 0

From sample to population
E[Y], E[X], E[Y2] (or Var(Y)), E[X2] (or Var(X)), E[XY] (or Cov(X, Y)), E[Y|X] are all
parameters that describe the population of interest. These parameters are fixed and
are invariant to changes in the context or environment being considered. Using
statistics, we estimate these true values from the data and determine the
informativeness of these estimates.



Applied Econometrics – masters
course – Lecture week 2
Regression
A regression is a simple manner to represent a relationship of variables. This is
typically specified to be a linear model, meaning it is linear in parameters. These
have the characteristic that their partial derivatives are independent of any βi.𝑌𝑖 =  β0 +  β1 𝑋𝑖1 +  β2 𝑋𝑖2 +  ...  +  β𝑘 𝑋𝑖𝑘 +  𝑒𝑖
where:
β0, β1, …, βk are unknown parameters we want to know
Y, Xi1,…,Xikare observable randomvariables
ei is an unobservable random variable (“disturbance”)
we define: 𝐸[𝑒𝑖 | 𝑋𝑖1,  … 𝑋𝑖𝑘] =  0 & 𝐸[𝑒𝑖] = 0
To allow marginal effects to vary by other factors, the inclusion of interaction effects
is possible. This means that the total effect of Xi1 on Y is not constant, but changes
with at least one other variable Xik.

e.g.: If the function for Y(X) is specified as𝑌𝑖 =  β0 +  β1 𝑋𝑖1 +  β2 𝑋𝑖2 +  β3 𝑋𝑖1𝑋𝑖2 +  𝑒𝑖 
Taking the derivative with respect to Xi1 yields a marginal increase in Y that is
dependent on the value of Xi2. 𝑑𝑌𝑖𝑑𝑋𝑖1 = β1 + β3𝑋𝑖2
Matrix notation used in regression
Data on individual i can be written in the vector format, where K+1 is the number of
data points collected for each individual.𝑋𝑖 = 𝑋𝑖 0 𝑋𝑖 1 𝑋𝑖 2… 𝑋𝑖 𝑘
For each individual xi we add a row to the matrix, so the complete matrix for all
individuals’ observations of Xk looks as follows:



; with dimensions N x K+1 (K+1 columns𝑋 = 1     𝑋11 ···  𝑋1𝐾 ⋮          ⋮ ⋱   ⋮ 1     𝑋𝑁1 ···  𝑋𝑁𝐾 [ ]
and N rows)

Note: the first row of 1s allows for the inclusion of the constant into our model,β0
which is not dependent on any Xi.

The observations y of each individual i can similarly be represented using a row
matrix. 𝑌 = [ 𝑌1 𝑌2 …    𝑌𝑁 ] 
Similarly, the coefficients of βk can be represented in a column-matrix, which is the
same for all individuals in the population. This is depicted as:

β = β0  β1 ⋮  β𝑘 
Their product Xi β is merely a compact way of writing a simple regression equation:

Xi β = β0 + β1 Xi1 + β2 Xi2 + …+ βk Xik

Identification
This step in the identification-estimation-inference paradigm derives how we can
recover unknown parameters. This identification can be done in three ways.

Identification with moment conditions
In our econometric specification we set up two moment conditions:
E [ei| Xi] = 0
E [ei] = 0

We had previously defined ei =Yi - Xi β. Combining this definition and the assumption
that parameters E[Y], E[X], Var(Y), Var(X), E[XY] are known or can be constructed, we
can uncover the unknown parameter E[Y|X].

This leads us to the moment conditions:𝐸 𝑒𝑖[ ] = 0𝐸 𝑒𝑖𝑋𝑖1[ ] = 0𝐸 𝑒𝑖𝑋𝑖2[ ] = 0𝐸 𝑒𝑖𝑋𝑖3[ ] = 0



⋮𝐸 𝑒𝑖𝑋𝑖𝐾[ ] = 0
Plugging in ei =Yi - Xi β yields: 𝐸 𝑌𝑖 − 𝑋𝑖β[ ] = 0𝐸 (𝑌𝑖 − 𝑋𝑖β)𝑋𝑖1[ ] = 0𝐸 (𝑌𝑖 − 𝑋𝑖β)𝑋𝑖2[ ] = 0𝐸 (𝑌𝑖 − 𝑋𝑖β)𝑋𝑖3[ ] = 0⋮𝐸 (𝑌𝑖 − 𝑋𝑖β)𝑋𝑖𝐾[ ] = 0
This is a system of K+1 equations and K+1 unknowns. Under certain conditions this
system has only one solution.

In matrix form this set of equations can be expressed as:
; where is the transpose of𝐸 𝑋𝑖𝑇(𝑌𝑖 − 𝑋𝑖β)⎡⎢⎣ ⎤⎥⎦ = 0 𝑋𝑖𝑇 𝑋𝑖

In the general case, ⇔𝐸 𝑋𝑖𝑇(𝑌𝑖 − 𝑋𝑖β)⎡⎢⎣ ⎤⎥⎦ = 0 𝐸 𝑋𝑖𝑇𝑌𝑖⎡⎢⎣ ⎤⎥⎦ = 𝐸 𝑋𝑖𝑇𝑋𝑖⎡⎢⎣ ⎤⎥⎦β
Multiplying both sides with the inverse matrix of gives the solution𝑋𝑖𝑇𝑋𝑖

β = 𝐸 𝑋𝑖𝑇𝑋𝑖⎡⎢⎣ ⎤⎥⎦−1𝐸 𝑋𝑖𝑇𝑌𝑖⎡⎢⎣ ⎤⎥⎦
This yields ; where is the residual from the regression of Xk on all otherβ𝑘 = 𝐶𝑜𝑣 𝑌𝑖,𝑋𝑖𝑘~( )𝑉 𝑋𝑖𝑘~( ) 𝑋~
X’s.

We can relax
E [ei| Xi1, Xi2, …, Xik] = 0 to

Cov(ei, Xik) = 0

Under-identification occurs if there are more unknowns than equations. This means
the unknowns in the system of equations cannot be identified.



Identification with ‘line of best fit’

Here we aim to minimise the error variance, so that the line best represents the data.
When we minimize we get the same equation for as with the moment𝐸 (𝑌𝑖 − 𝑋𝑖β)2⎡⎢⎣ ⎤⎥⎦ β𝑘
conditions: β𝑘 = 𝐶𝑜𝑣 𝑌𝑖,𝑋𝑖𝑘~( )𝑉 𝑋𝑖𝑘~( )
Once we have identified the parameters through we can use this to �ind :β1 β𝑘 β0β0 = 𝑌 − β1𝑋1  
Identification with ‘maximum likelihood ‘

This method maximises the probability of a observing the data, under a specified
statistical model. This in turn comes down to the same formula as the other two
methods. It is clear to see that maximising the likelihood is equivalent to minimising
the variance for the error. β𝑘 = 𝐶𝑜𝑣 𝑌𝑖,𝑋𝑖𝑘~( )𝑉 𝑋𝑖𝑘~( )
Estimation
After identifying we can estimate this from our sample as .β𝑘 β𝑘̂
If in the population, we can estimate from the data with:β = 𝐸 𝑋𝑖𝑇𝑋𝑖⎡⎢⎣ ⎤⎥⎦−1𝐸 𝑋𝑖𝑇𝑌𝑖⎡⎢⎣ ⎤⎥⎦ β𝑘̂

where is the true if it holds thatβ𝑘̂ = 𝑖=1
𝑁∑ 𝑋𝑖𝑇𝑋𝑖𝑁( )−1

𝑖=1
𝑁∑ 𝑋𝑖𝑇𝑌𝑖𝑁( ) β𝑘̂ β𝑘 𝐸 𝑋𝑖𝑇𝑒𝑖⎡⎢⎣ ⎤⎥⎦ = 0

Goodness of Fit estimation

We define as a measure of the goodness of fit. This quantifies the𝑅2̂ = 𝑉 𝑋𝑖β̂( )𝑉 𝑌𝑖( )
proportion of the variation in Y that is explained by the estimation .𝑋𝑖β̂
a high does not imply a causal interpretadion𝑅2
a low does not imply no causal interpretation𝑅2



a low does not preclude precise estimation of marginal effects𝑅2
Functional forms involving logarithms
Logarithms are used in regressions to express variables as a percentage. It is handy
to know how to interpret the beta’s with the following log regressions:
Level-log | y = log(x) | ∆𝑦 =  (β1/100)%∆𝑥 
Log-level | log(y) = x | %∆𝑦 =  (100 *  β1)∆𝑥 
Log-Log | log(y) = log(x) | %∆𝑦 =  β1%∆𝑥 
Inference
With a reasonable estimator of E[Yi|Xi] we require more assumptions to test
hypotheses about this estimator. From the data we can infer properties of the
population from the descriptive statistics of the sample. To gain information of the
distribution we require the variance-covariance matrix. Deriving this generates the
following equation.

𝑉𝑎𝑟^ β̂( ) =  𝑖=1
𝑁∑ 𝑋𝑖𝑇𝑋𝑖𝑁( )−1

𝑖=1
𝑁∑ 𝑒𝑖2𝑋𝑖

𝑇𝑋𝑖𝑁2⎛⎝ ⎞⎠ 𝑖=1
𝑁∑ 𝑋𝑖𝑇𝑋𝑖𝑁( )−1

With this variance we can begin hypothesis testing as to how likely a is given ourβ
sample distribution. If the variance is independent of Xi, then the errors are
homoscedastic. If they are dependent on Xi, then this is called heteroskedasticity. In
Stata this can be controlled by using a ‘robust’ regression command. Clustering also
relaxes assumptions on independence across observations.
If we want to test if the Beta is significantly different from 0, we set up the following
hypotheses and t-test: 𝐻0:  β𝑘 = 0𝐻1:  β𝑘≠0

𝑡 = β̂𝑘−0𝑉𝑎𝑟^ (β̂𝑘)
The null-hypothesis is consequently rejected if significantly deviates from zero, inβ̂𝑘
other words: if it is significantly larger or smaller than zero.



Prediction and control variables
Using regression models as the basis, predictions can be made of the dependent
variable. If we have a good estimation of then we can learn about Yi beforeβ
observing it. The Lasso method is a method of selecting and fitting variables with the
aim of prediction and model selection.

‘Least Absolute Shrinkage and Selection Operator’
(LASSO)
The methodology is based on the Bias-Variance trade off. For prediction it may be
worth trading off some bias for even lower variance, to get a more accurate one.
From previous derivations we know that calculating the “right” is done byβ
minimising the error variance. 𝐸 (𝑌𝑖 − 𝑋𝑖β)2⎡⎢⎣ ⎤⎥⎦ +  λ 𝑘=0

𝐾∑ β𝑘| | 
In the Lasso methodology we minimise this while allowing violating the constraint at
a price . This is the ‘acceptable’ trade-off selected when setting up the equation. Forλ
values between 0 and we trade off increased bias for less variance in ourλ𝑚𝑎𝑥
estimation of . In practice cross validation selects this for you in Stata.β
This procedure is performed on the Training sample (T) and is then tested on the
Validation sample (V). The Mean Squared Error (MSE) is used to calculate the
prediction error of the Lasso model.

; where is the betas estimated from the training sample.𝑀𝑆𝐸𝑉 = 𝐸 𝑌𝑖𝑉 − 𝑋𝑖𝑉β̂𝑇( )2⎡⎢⎢⎣ ⎤⎥⎥⎦ β̂𝑇



Applied Econometrics – masters
course – Lecture week 3
There are a number of biases that compromise identification of regression models.
These are:

1. Data Missing Completely at Random (MCAR)
2. Sample Selection Bias
3. Selection Bias
4. Bad Controls
5. Measurement Error
6. Simultaneity and Reverse Causality
7. Omitted Variable Bias

Data missing completely at random (MCAR)
In a dataset it is possible that there will be missing observations. These are
represented by a “.” in Stata. Stata will drop these observations in the estimation.

This is not necessarily a bad thing if you are satisfied that the data is missing
completely at random (MCAR). The only issue with removing the data is that the
sample size is now smaller.

However, removing observations means that there is less statistical power meaning
you are less likely to find statistically significant effects. If you are concerned about
sample size, the following process can be used:
If you have a random sample {Yi, Xi1, Xi2} of N observations and Xi2 is missing
variables. You define Zi2=(1-Mi2) Xi2where:

𝑀𝑖2 = {1,  𝑖𝑓 𝑋𝑖2 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔;  0,  𝑖𝑓 𝑋𝑖2 𝑖𝑠𝑛'𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
This gives you the following observations for Zi2

Zi2= {𝑋𝑖2,   𝑖𝑓 𝑋𝑖2 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑;  0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
Following this you can estimate:



Yi = β0 + β1Xi1 + β2Zi2 + β3Mi2 + ei

To interpret this, if Mi2 is 0 we calculate β00,  β10, β20
If Mi2 is 1 we can calculate . Β2 cannot be calculated as when Mi1 is 1, Zi2 is 0 asβ01, β11
Zi2=(1-Mi1) Xi2

The coefficients and are combined (a weighted average is taken) as well asβ00 β01 β10
and . By doing this it allows us to get the most accurate and statistically significantβ11
results for β0 and β1 despite the missing observations for Xi2.

Sample selection bias
Sample Selection Bias is when a bias exists because of an error in selecting your
sample. Two possible ways this can happen are:

1. Sample Design; when data is collected non-randomly.
2. Respondent Behaviour (Self-Selection); when participants in the survey either

do not answer all questions or drop out after answering a few.

There are a few ways that sample selection bias can be avoided.
1. Selecting a sample based on an exogenous variable (a variable determined

outside the model)
2. Do not select a sample based on the dependent variable or an endogenous

control variable
3. You can use a regression to control for factors driving sample selection

Proof that you can use an exogenous variable
Imagine you want to estimate E[Yi|Xi] =Xiβ. This is identifiable if E[ei|Xi] =0
We know that this assumption holds when a sample is selected at random. If you
have a non-random let𝑆𝑖 = {1,  𝑖𝑓 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 0,  𝑖𝑓 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 
Now we must determine if E [ei|Xi, Si =1] =0
There are two cases where this is obvious:

1. Si is purely determined by Xi, therefore making Si redundant
2. Si is independent of Yi, Xi and ei



When this is the case, we can estimate β using. (It is important to understand the
following working out, but you do not need to derive it yourself)

β̂= 𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑋𝑖𝑁( )−1

𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑌𝑖𝑁( )

this equals

𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑋𝑖𝑁( )−1

𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇(𝑋𝑖β+𝑒𝑖)𝑁( )

𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑋𝑖𝑁( )−1

𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇(𝑋𝑖β+𝑆𝑖𝑋𝑖𝑇𝑒𝑖)𝑁( )

β + 𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑋𝑖𝑁( )−1

𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑒𝑖𝑁( )

In a large sample goes to 0 as it is a consistent estimator in large settings.𝑖=1
𝑁∑ 𝑆𝑖𝑋𝑖𝑇𝑒𝑖𝑁( )

This suggests that it is ok to select a sample based on exogenous variables because:𝐸[𝑒𝑖|𝑋𝑖 , 𝑆𝑖 ] =  𝐸[𝑒𝑖|𝑋𝑖 ] =  𝐸[𝑒𝑖] = 0
If the above is not the case, you cannot ignore sample selection.

Example: If you want to find Yi = Xiβ + βk+1Xik+1 + ei. Where Yi is someone’s weekly
earnings and we Xik+1 is the self-reported ranking of i’s happiness out of 10, if we want
to select people who are of above average happiness, we make our selection rule.𝑆𝑖 = {1,  𝑖𝑓 𝑋𝑖𝑘+1 𝑖𝑠 ≥ 7. 5 0,  𝑖𝑓 𝑋𝑖𝑘+1 𝑖𝑠 <  7. 5 
However respondent behaviour may have an effect on who is selected in this
sample. In this case we need to control for people’s ego when they self-report their
happiness. Not doing so will lead to sample selection bias as people may overstate
their happiness because they want to seem better off than they actually are.
Controlling for EGO we get the following estimate: Yi=Xiβ + βk+1Xik+1 + βk+2EGOi

+ ei

We then rely on the assumption that:
E[ei|Xi,Xik+1,EGOi,si] = E[ei | Xi,Xik+1,EGOi]=0
If the assumption holds, then we get a good estimate from this sample.

Selection bias
Selection Bias is when you have biased estimates of β because of underlying
differences between the units in the sample. This is different to sample selection bias
where you have biased estimates of β because of differences between your sample



and the actual population. Selection bias can occur when some subjects select
themselves into different groups. This will generate biased estimates of β as they will
be comparing people who should be in the same group leading to inaccuracies. As
before with sample selection bias you can control for factors that will lead to
selection bias.

Example: A study on the long-run effects of attending the gym on a person’s weight.
In this case we have two groups.𝑋𝑖1 = {𝑇,   𝑝𝑒𝑟𝑠𝑜𝑛 𝑖 𝑔𝑜𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑦𝑚 𝐶,  𝑝𝑒𝑟𝑠𝑜𝑛 𝑖 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑔𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑦𝑚 
For everyone they either go to the gym or not. These two outcomes are expressed
by Yi(T) and Yi(C). To understand the effect of going to the gym we will calculate
Yi(T)―Yi(C).

Unfortunately, only one of these can be observed at a time. We cannot observe the
missing observations for a potential outcome (we do not know the weight of a
person who attends the gym had they not attended, and vice versa). This missing
outcome is known as a counterfactual.

These comparisons may therefore be inaccurate as they could be down to other
factors that lead people to not attend the gym. This is called selection bias.
In order to get past this selection bias, we must control for it. Firstly, we will model
the error for i as a derivation from the average weight of the population if they do
not attend the gym

ei= Yi(C)―E[Yi(C)]
We set the weight of someone who attended the gym to

Yi(T) = Yi(C) + β1

And let
Β0= E[Yi(C)]

Combining the equations gives
Yi(C)=β0 + ei

Yi(T) = β0+ β1+ ei

Then replace T with 1 and C with 0 for Xi1

Yi = β0 + β1Xi1 + ei

Thus, when doing the regression, you get
E[Yi |Xi1 = T] = β0+ β1 + E[ei |Xi1 = T]
E[Yi |Xi1 = C] = β0 + E[ei |Xi1 = C]

Subtracting the C equation from the T equation gives
E[Yi|Xi1 = T] − E[Yi|Xi1 = C] = β1 + E[Yi(C)|Xi1 = T] − E[Yi(C)|Xi1 = C]



The E[Yi(C)|Xi1 = T] − E[Yi(C)|Xi1 = C] part of this calculation represents the selection
bias. We cannot identify β1 because of the selection bias meaning that the treated
group differs from the control group and therefore we cannot get a good estimate
for β1 as:
E[Yi(C)|Xi1 = T] ≠ E[Yi(C)|Xi1 = C]

Case study: Dale Krueger solution
Dale and Kreuger (2002) found a solution to solve the problem of selection bias. They
wanted to find the effect of going to an elite college on people’s earnings. They ran
into the problem of selection bias as there were too many non-observable
differences between the two groups.

They gathered individual information on people’s SAT scores, what type of university
they attended and what they applied to as well as their earnings in 1996. From the
universities they had information on the type of university they were as well as tuition
fees and average SAT scores. Dale and Kreuger realised that ‘the colleges that
people applied to’ could identify hard-to-observe characteristics such as where their
parents went to and their ambition. While ‘the colleges they were admitted to’
showed other unobservable characteristics about the students.

They then compared the earnings of people in public and private universities that
were accepted into the same colleges. They found that the average causal effect of
going to an elite university on wage was not statistically significant.
The regression equation was given by

Yi = β0 + β1Xi1 + + Xiβ + ei𝑗=2
151∑ β𝑗𝑋𝑖𝑗

where Xij indicates whether individual i belonged to group j while Xi includes the
observable characteristics of i such as SAT scores etc. The estimates of β are
interpreted as causal if conditional independence holds i.e. if ei is independent of Xi1

once the different groups are controlled for.

Bad controls
If the right controls are included, the estimated coefficients can be interpreted as
causal. However, it is not good to include all possible variables as controls. A ‘kitchen
sink’ regression refers to one in which all possible controls are thrown into; some



controls are simply bad controls. These can threaten identification. Secondly,
adding controls takes out variance of our key explanatory variables; meaning the
estimation becomes trickier.

If the control variable is determined before the variable of interest (treatment), there
is no problem with identification. In contrast, if the control is determined after the
variable of interest, then controlling for it distorts the full picture. These types are
called mechanisms and should not be included, else they hinder efforts to uncover
the coefficient of interest.

Proxy controls are potential bad controls that researchers intentionally include in an
attempt to control for an important missing variable.

Measurement error (ME)
Measurement errors exist in two forms. It can be in the explanatory variables or in
the dependent variables. This occurs when there is a clearly defined quantitative
measure of the target variable, yet this is inaccurately measured.

ME in the dependent variable
If the measurement error is given by: 𝑢𝑖 = 𝑌𝑖 − 𝑌𝑖*
and the ‘true’ model is given by: 𝑌𝑖* = 𝑋𝑖β + 𝑒𝑖
Then the model run on the measured values is: 𝑌𝑖 = 𝑋𝑖β + 𝑒𝑖 + 𝑢𝑖
In this model, can only be identified if Cov(Xik, ui)=0. In both cases, inference isβ
affected by the measurement error. The variance and consequently the 𝑆𝐸̂(β̂)
becomes larger which decreases the likelihood of a statistically significant result.

ME in the explanatory variable
If the independent/explanatory variable has a measurement error ánd the error
covaries with the reported values, then the estimates of the regression will lead to a



lower bound conservative estimate of the variable of interest. This means that the
‘true’ β will be larger than the observed β.

Simultaneity bias
Simultaneity bias refers to a situation in which X determines Y, but Y is also at least
partly determined by X. This is related to reverse causality.
Mathematically this can be shown by the following relationships.𝑌𝑖 = α𝑋𝑖1 +  β𝑋𝑖2 + 𝑒𝑖
Yet, 𝑋𝑖1 = γ𝑌𝑖 +  𝑍𝑖 + 𝑒𝑖
As these are simultaneously determined, and , simply running the first regressionγ≠0
will not return the true causal effect of X1 on Y, but a biased estimator will be
determined instead.

Omitted variable bias (ovb)
The problems mentioned so far boil down to a false estimate being made due to the
exclusion of variables, leading to a bias. In the basic form, the estimate of the effect
of X1on Y then includes the effect that is in fact due to X2 but is not controlled for.

Basic form: 𝑌𝑖1 = β0 + β1𝑋𝑖1 + 𝑒𝑖
Full form: 𝑌𝑖1 = β0 + β1𝑋𝑖1 + β2𝑋𝑖2 + 𝑒𝑖

The estimate of can be simplified to:β  β̂ = β1 + β2 𝐶𝑜𝑣(𝑋𝑖2,𝑋𝑖1) 𝑉𝑎𝑟 (𝑋𝑖1) ⏟
OVB

From this, one can easily see how the omitted variable X2has the potential to bias the
estimator of X1. The following table shows the effect of the ovb on :β1

> 0β2 < 0β2
Cov(Xi1, Xi2) > 0 overestimate β1 underestimate β1
Cov(Xi1, Xi2) < 0 underestimate β1 overestimate β1



Applied Econometrics – masters
course – Lecture week 4
Causal inference
This week the methods to deliver a causal interpretation are discussed. These are:

1. Experiments
2. Instrumental Variables (IV)
3. Regression in Discontinuity Design
4. Differences in Differences

Fundamental problem of causal interference
If Xi1 can have two values, T and C, the target parameter can be described as:
βi1=Yi(T)―Yi(C)

However, it is only possible to observe one of these outcomes at any given time. This
is called the fundamental problemof causal inference.

To show that it is not possible, the target can be redefined as
E[Yi(T)―Yi(C)]
This is the average treatment effect (ATE) for our population. This can be rewritten as
E[Yi|Xi1=T]― E[Yi|Xi1=C]
Which equals

And then simplifies to E[Yi(T)―Yi(C)]

Experiments
Selection bias can be eliminated through randomisation. We will run a randomised
control trial (RCT). This assigns people into the treatment group. This means that the
treatment and control groups are the same on average except for the treatment
assignment.



RCT is very expensive and difficult to do in a credible way.

Estimation and inference
If the RCT has one treatment and one outcome (Y) you can either do the regression.𝑌𝑖 = β0 + β1𝑋𝑖1 + 𝑒𝑖
Or calculate 𝑌𝑋𝑖1=1 − 𝑌𝑋𝑖1=0
It is better to use regression analysis as that simultaneously generated the
t-statistics.

If the RCT has multiple treatments and/or multiple outcomes (many Ys), the
researcher should adjust for this. If you were to run an experiment with 4 treatments
and 5 outcomes. We would then get this set of equations for estimation.𝑌𝑖1 = β01 + β11𝑋𝑖1 + β21𝑋𝑖2 + β31𝑋𝑖3 + β41𝑋𝑖4 + 𝑒𝑖1𝑌𝑖2 = β02 + β12𝑋𝑖1 + β22𝑋𝑖2 + β32𝑋𝑖3 + β42𝑋𝑖4 + 𝑒𝑖2𝑌𝑖3 = β03 + β13𝑋𝑖1 + β23𝑋𝑖2 + β33𝑋𝑖3 + β43𝑋𝑖4 + 𝑒𝑖3𝑌𝑖4 = β04 + β14𝑋𝑖1 + β24𝑋𝑖2 + β34𝑋𝑖3 + β44𝑋𝑖4 + 𝑒𝑖4𝑌𝑖5 = β05 + β15𝑋𝑖1 + β25𝑋𝑖2 + β35𝑋𝑖3 + β45𝑋𝑖4 + 𝑒𝑖5
Omnibus treatment
Omnibus treatments are experiments with a lot of broad based interventions that
have a number of things being manipulated at one time. The advantage of these is
that they help people discover if something works, unfortunately it does not show
why something works and is difficult to link back to theory.

Experiments – summary
Experiments are expensive. They can be risky as something may go wrong in the
question or design. Another issue is that it is hard to determine whether the outcome
will work in all cases (can be generalised) or only in the conditions and time of the
experiment.



Instrumental variables (IV)

Identification
A different way of finding causal effects is to use instrumental variables. These are
“outside forces” that effect only Xi and not Yi.
Suppose our model of interest is 𝑌𝑖 = β0 + β1𝑋𝑖1 + 𝑒𝑖
This is called the second stage regression.
As Cov(Xi1,ei)≠0, we can’t find β1 using

𝐶𝑜𝑣(𝑌𝑖,𝑋𝑖1)𝑉𝑎𝑟(𝑋𝑖1)
IV aims to find a variable Zi that changes Xi but is not correlated with ei. This can be
implemented into the following ‘first stage’ regression:

; where𝑋𝑖1 = π0 + π1𝑍𝑖1 + 𝑢𝑖 π1≠0 ,  𝑎𝑛𝑑 𝐶𝑜𝑣 𝑍𝑖, 𝑒𝑖( ) = 0
The estimation of coefficients then follows previous methodology yields the IV
formula: 𝐶𝑜𝑣 𝑌𝑖,𝑍𝑖1( )/𝑉𝑎𝑟(𝑍𝑖1)𝐶𝑜𝑣 𝑋𝑖1,𝑍𝑖1( )/𝑉𝑎𝑟(𝑍𝑖1) = β1
There are a number of assumptions that allow us to get β1 via the reduced form and
first stage.

1. πi≠ 0. This is what makes it a meaningful first stage.
2. Cov(Zi1,ei)=0 says Zi1 is exogenous relative to unobservables affecting Y1.

Independence. IV is randomly assigned and unrelated to omitted variable
bias in the reduced.
Exclusion Restriction. IV affects the outcome only through the effects it has
on Xi.

If the independence and exclusion restriction hold then it is said to be a valid IV.
The final assumption needed is:

3. Monotonicity. The instrument does not cause people to select into the
treatment or for others to select out. There should be no ‘defiers’.

Estimation
When you have one instrument Zi1 and endogenous variable Xi1, the population
moments are: 𝐸 𝑌𝑖 − β0 − β1𝑋𝑖1[ ] = 0



𝐸 (𝑌𝑖 − β0 − β1𝑋𝑖1)𝑍𝑖1[ ] = 0
This equals β0 + 𝐸 𝑋𝑖1[ ]β1 = 𝐸 𝑌𝑖[ ]𝐸 𝑍𝑖1[ ]β0 + 𝐸 𝑋𝑖1𝑍𝑖1[ ]β1 = 𝐸 𝑌𝑖𝑍𝑖1[ ]
Given a random sample we substitute in the sample averages.β0̂ + (𝑖=1

𝑁∑ 𝑋𝑖1𝑁 ) β1̂ = (𝑖=1
𝑁∑ 𝑌𝑖𝑁 )

(𝑖=1
𝑁∑ 𝑍𝑖1𝑁 ) β0̂ + (𝑖=1

𝑁∑ 𝑍𝑖1𝑋𝑖1𝑁 ) β1̂ = (𝑖=1
𝑁∑ 𝑌𝑖𝑍𝑖1𝑁 )

β1can be estimated by doing the following:
1. Estimate the first stage 𝑋𝑖1 = π0 + π1𝑍𝑖1 + 𝑢𝑖
2. Calculate the fitted value 𝑋𝑖1 = π̂0 + π̂1𝑍𝑖1
3. Replace Xi1 with X̂i1 in the second stage equation𝑌𝑖 = β0 + β1𝑋𝑖1 + 𝑒𝑖
4. Estimate the last equation using least squares regression

It is better to let STATA get the estimates for you using commands such as ivreg,
ivreg2, xtivreg, and xtivreg2, so that the standard errors will be correct.

When more IVs are included than endogenous variables another method must be
used to find β. The generalised method of moments (GMM) approach is used, which
finds β while minimising the following equation.(𝑖=1

𝑁∑ 𝑍𝑖𝑇(𝑌𝑖 − 𝑋𝑖 β))𝑊𝑁(𝑖=1
𝑁∑ 𝑍𝑖𝑇(𝑌𝑖 − 𝑋𝑖 β))

Where the following condition is set.𝑊𝑁 = (𝑖=1
𝑁∑ 𝑍𝑖𝑇𝑍𝑖𝑁 )−1

Inference
The standard error for the 2SLS estimator is𝑆𝐸 β̂1( ) = 𝑆(𝑒𝑖)𝑁 𝑆(𝑋̂𝑖1)
The standard error will be larger than the OLS standard error



𝑆𝐸 β̂1( ) = 𝑆(𝑒𝑖)𝑁 𝑆(𝑋𝑖1)
because X̂i1 will vary less than Xi1 from sample to sample.

Important remarks on IV
Check for a weak first stage. The first stage t statistic should not be lower than 3.3
and the F statistic should not be lower than 10. Do balancing tests. If you see that
there is an imbalance check how your estimates change when using imbalanced
controls. One should note that IV estimator is consistent but generally not unbiased.

Regression discontinuity design (RDD)

Identification
There are often well-defined rules that define whether someone is in a treatment (T)
or control (C) group. One example is whether someone graduates cum-laude or not.
The grade would represent the variable which determines what group the individual
is in. 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑖 = 𝑇   𝑋𝑖1≥𝑥 𝐶   𝑋𝑖1 < 𝑥 { }
We can then use this discontinuity to identify the effect of the treatment at the
threshold x. 𝐸 𝑌𝑖 𝑇( ) − 𝑌𝑖 𝐶( )|𝑋𝑖1 = 𝑥[ ]
To identify β1 we need to allow h to be a positive number as small as possible to
calculate the treatment effect within a certain threshold just above or below x.𝐸 𝑌𝑖|𝑥≤𝑋𝑖1≤𝑥 + ℎ[ ] − 𝐸 𝑌𝑖|𝑥 > 𝑋𝑖1≥𝑥 − ℎ[ ]
We can show that this will give the treatment effect as h approaches 0.𝐸 𝑌𝑖|𝑥≤𝑋𝑖1≤𝑥 + ℎ[ ] − 𝐸 𝑌𝑖|𝑥 > 𝑋𝑖1≥𝑥 − ℎ[ ]( ) = 𝐸 𝑌𝑖 𝑇( ) − 𝑌𝑖 𝐶( )|𝑋𝑖1 = 𝑥[ ]  
For this identification to work and must be continuous𝐸 𝑌𝑖 𝑇( )|𝑋𝑖1 = 𝑥[ ] 𝐸 𝑌𝑖 𝐶( )|𝑋𝑖1 = 𝑥[ ]
at x.



Estimation
With a very large sample, it is possible to estimate.𝐸 𝑌𝑖|𝑥≤𝑋𝑖1≤𝑥 + ℎ[ ] − 𝐸 𝑌𝑖|𝑥 > 𝑋𝑖1≥𝑥 − ℎ[ ]
Using 𝑌+ − 𝑌−
This means the average outcome just below the threshold is subtracted from the
average just above.

Inference
With a very large sample the standard error for the mean difference is.𝑆𝐸̂ 𝑌+ − 𝑌−( ) = 𝑆(𝑌𝑖) 1𝑁+ + 1𝑁−
S(Yi) is the standard deviation for people who are very close to the cut-off point for x.

Estimation and inference
However, rarely are there enough data points at x to get a good estimation or
inference. Researchers will therefore increase the bandwidth around x to try and
reduce the sampling variance. But this can make our estimator inconsistent/biased.

Using the STATA package rdrobust will allow you to get the optimal bandwidth
So, in order to estimate it for smaller samples let: 𝐷𝑖 = 1   𝑋𝑖1≥𝑥 0   𝑋𝑖1 < 𝑥 { }
The specification for this RDD is𝑌𝑖 = β0 + β𝑟𝑑𝐷𝑖 + β1𝑋𝑖1 + β2𝐷𝑖𝑋𝑖1 + 𝑒𝑖

is measured by βrd with h as our bandwidth. Xi1 is for
differences between people below x. DiXi1 measures the differences between people
above and at x. Cov(Di,ei)=0

The assumptions of RDD can be tested. The main one is that units that are very close
to x are effectively randomised whether they are in the treatment or control groups.

These tests are:



1. Balancing Test- it shows that demographics are similar either side of the
cut-off

2. McCrary Test- it is used to check if the number of units vary smoothly across
the threshold.

Fuzzy RDD
A sharp RDD was described above. This is when there is a deterministic and
discontinuous jump. This essentially means that it is well defined and known whether
someone is above or below the threshold i.e. whether someone is tall enough to ride
a rollercoaster.

In some cases the threshold only represents a change in the probability of treatment.
One example of this is the legal drinking age. It means that someone older than that
age has an increased probability of drinking alcohol however we do not know if they
were drinking before that age.
To do a fuzzy RDD you should combine the RDD with an IV.
Define Dias 𝐷𝑖 = 1 𝑖 𝑖𝑠 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 0 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 { }
After this estimate 𝑌𝑖 = β0 + β1𝐷𝑖 + β2𝑋𝑖1 + 𝑒𝑖
Then instrument for Di using

You have to make sure that both RDD assumptions and IV assumptions are satisfied.

Differences-in-differences (DD)

Identification
DD uses the fact that some treatments send certain people down a different path
and gives them a different outcome then before.

An example of this is if there were two cities with similar crime rates and a new policy
came in place in one of them. By looking at their trends and comparing changes



after the new policy has been brought in you can get a causal effect of the policy on
crime rates.

In this example we will use two cities (A and B) and two years (1 and 2). City B brings
in a new policy to tackle crime in year 2.

The treatment group is defined below
1 2

A No New Policy (C) No New Policy (C)
B No New Policy (C) New Policy (T)

The target parameter is Yi(d,t) ; where Y is dependent on city or district d and time t.

Let 𝑌𝑖 𝑑, 𝑡( ) =  γ 𝑑( ) + λ 𝑡( ) + β𝑇1 𝐵, 2( ) + 𝑒𝑖 𝑑, 𝑡( )
We are interested in βT, which is the effect of the intervention. The expectation yields𝐸 𝑌𝑖 𝑑, 𝑡( )|𝑑, 𝑡[ ] = γ 𝑑( ) + λ 𝑡( ) + β𝑇1 𝐵, 2( ) + 𝐸 𝑒𝑖 𝑑, 𝑡( )|𝑑, 𝑡[ ]
Their new policy generates the following four potential outcomes:

1 2
A 𝐸 𝑌𝑖 𝐴, 1( )|𝐴, 1[ ] 𝐸 𝑌𝑖 𝐴, 2( )|𝐴, 2[ ]
B 𝐸 𝑌𝑖 𝐵, 1( )|𝐵, 1[ ] 𝐸 𝑌𝑖 𝐵, 2( )|𝐵, 2[ ]
This overview enables the extraction of the DD formula𝐸 𝑌𝑖 𝐵, 2( )|𝐵, 2[ ] − 𝐸 𝑌𝑖 𝐵, 1( )|𝐵, 1[ ]( ) −  (𝐸 𝑌𝑖 𝐴, 2( )|𝐴, 2[ ] − 𝐸 𝑌𝑖 𝐴, 1( )|𝐴, 1[ ])
If we want to look at the city with the policy change, we examine𝐸 𝑌𝑖 𝐵, 2( )|𝐵, 2[ ] − 𝐸 𝑌𝑖 𝐵, 1( )|𝐵, 1[ ]
We can show that this equalsλ 2( ) − λ 1( ) + β𝑇 + 𝐸 𝑒𝑖 𝐵, 2( )|𝐵, 2[ ] − 𝐸 𝑒𝑖 𝐵, 1( )|𝐵, 1[ ]

gives us the change in crime rates in city B had the𝐸 𝑒𝑖 𝐵, 2( )|𝐵, 2[ ] − 𝐸 𝑒𝑖 𝐵, 1( )|𝐵, 1[ ]
new policy NOT been brought in. We call it trendB.

City A was not treated, 𝐸 𝑌𝑖 𝐴, 2( )|8, 2[ ] − 𝐸 𝑌𝑖 𝐴, 1( )|𝐴, 1[ ]
This is λ 2( ) − λ 1( ) + 𝐸 𝑒𝑖 𝐴, 2( )|𝐴, 2[ ] − 𝐸 𝑒𝑖 𝐴, 1( )|𝐴, 301[ ]



We refer to as trendA.𝐸 𝑒𝑖 𝐴, 2( )|𝐴, 2[ ] − 𝐸 𝑒𝑖 𝐴, 1( )|𝐴, 1[ ]
Therefore our DD formula is
βT+ trendB ― trendA

If the common trends assumption holds trendB = trendAmeaning that we are left with
βT in our DD formula (the treatment effect).
The common trends assumption is that the two cities follow the same trend before
and in the counterfactual after the intervention. This is vital to a causal interpretation
of DD.

The dashed line represents the trend for City B had they not introduced the policy,
the difference between the endpoint of the dashed line and the solid line is the
treatment effect of the new policy.
If you do not have common trends between the two, one option is to equalise the
trend using control variables.

Estimation and inference
We will estimate the following formula:𝑌𝑖𝑑𝑡 = β0 + β1𝑋𝑑 + β2𝑋𝑡 + β3(𝑋𝑑 * 𝑋𝑡) + 𝑋𝑖𝑑𝑡β + 𝑒𝑖𝑑𝑡
With c=1 if it is city A and 0 when it’s city B, t=1 when t≥2 and 0 when t≤1.
Essentially you should add a control for the year and city, you can find the treatment
effect by interacting the city and the year as seen above.



Key assumptions
Experiments: Randomisation is done correctly
Regression: Controls allow for an apples-to-apples comparison
Instrumental Variables (IV): Relevant first stage (πi ≠ 0), Independence, Exclusion
Restriction, Monotonicity
Regression Discontinuity Design: Research subjects cannot control running variable
perfectly
Differences in Differences (DD):Common Trend Assumption

Applied Econometrics – masters
course – Lecture week 5
This week introduces new ways to tackle the fundamental problem of causal
inference. It does so by making use of panel data and repeated observations over
time of one individual.

Fixed effects
Regression analysis allows for control variables to be included in the model, which
decreases potential biases. However, characteristics of individuals are often
unobservable (think of intrinsic motivation or natural ability), which makes
controlling for them (even through a proxy) tricky at best. Fixed effects allows a
researcher to control for ALL time invariant characteristics.

Sticking to the thought of intrinsic motivation or natural ability, we can reasonably
assume that an individual has a constant level of these. For simplicity we will call this
‘ability’.
Including ability in a regression for an individual’s income level generated the
following basic regression equation:

Yit = β0 + β1Xit1+ Ai+ eit ;
where Yit is income of i at t, Xit is the variable of interest of i at t and Ai is individual i’s
ability, which is constant over time.



Estimating β1 is only possible if Cov(Xit1, Ai) = 0

This is a very strong assumption that often does not hold, in which case the
coefficient cannot be identified. In contrast, fixed effects make use of repeated
observations of an individual to generate a within group specification. By subtracting
the previous period’s values or as is the case in FE, the mean, only values that
change over time remain. Ability, which is constant over time is removed, leaving a
model in which β1 can be identified. In this way, without ever knowing the values of
the unobservable characteristics it is ‘washed out’. Demeaning the basic equation
generates the following equation. Estimation thorough this is using the fixed effects
estimator. 𝑌𝑖𝑡 − 𝑌𝑖( ) = β1 𝑋𝑖𝑡1 − 𝑋𝑖1( ) + 𝑒𝑖𝑡 − 𝑒𝑖( )
In stata this is performed using the commands

xtset person year
xtreg Y X, fe robust

where fe demeans the data before running an OLS regression on the demeaned
data. Robust allows heteroskedasticity and serial correlation to be present in the
error terms. Allowing for individual specific time invariant factors to be controlled for
reduces a lot of potential biases without ever knowing the true values, however there
can still be factors that affect the whole population at any given time t. The complete
model most often seen in econometrics allows for this by including a dummy
variable for each year in the specification.γ𝑡 𝑌𝑖𝑡 = β0 + β1𝑋𝑖𝑡1 + 𝑋𝑖𝑡1β + 𝐴𝑖 + γ𝑡 + 𝑒𝑖𝑡

where 𝑋𝑖𝑡1β = β2𝑋𝑖𝑡2 + β3𝑋𝑖𝑡3 + … + β𝑘𝑋𝑖𝑡𝐾
Random effects
If Cov(Xit1, Ai) = 0 then β1 can be identified without FE. In this case Ai does not have to
be controlled for and can be disregarded from the regression equation and bundled
into the error term.𝑌𝑖𝑡 = β0 + β1𝑋𝑖1 + 𝑣𝑖𝑡
where Vit = Ai+



This essentially runs a simpler OLS regression on the data. However, as Ai is an
individual specific constant, putting this into the error term induces correlation in the
error term. For this reason, the standard errors need to be adapted accordingly.
Once the estimates and have been made, the variance-covariance matrix can σ𝐴2̂ σ𝑒2̂ 
be constructed. Stata deals with this automatically using the command: xtreg Y X, re

Correlated random effects
The assumption necessary for RE specification is not always a reasonable one. In the
case where it is possible to estimate A, this can be done by including individual
specific averages of control variables over time.

If the regression model 𝑌𝑖𝑡 = β0 + β1𝑋𝑖1 + β2𝑋𝑖2 + β3𝑋𝑖𝑡 + 𝐴𝑖 + 𝑒𝑖𝑡
is implemented, it is possible to include (the average of Xit for individual i)𝑋𝑖 = 𝑡=1

𝑇∑ 𝑋𝑖𝑡𝑇
and define Ai as . This relaxes the assumption Cov(Xit1, Ai) = 0 to only ri𝐴𝑖 = β4𝑋𝑖 + 𝑟𝑖
being uncorrelated with the X variables. The identification strategy is therefore open
to more cases. As more important variable averages are included, this assumption
becomes more reasonable. The averages represent exactly the factors that make up
Ai. As more and more control variable averages are included, the sum of these
values would tend to the value of Ai. These are exactly the factors that in FE were just
‘washed out’ but in RE should have been controlled for.
Imagine a world in which all individual specific time-invariant criteria are
quantifiable. In this world, as the number of included variables increases, more and
more of all possible attributes are being added. Ai is nothing more than the
weighted average of all of these factors.

A causal interpretation of Beta still relies on certain assumptions. These have to be
assessed case by case for how realistic they are.

Dynamic Panels
Often when regressing with panel data in fixed effects we control using lags of the
dependent variable. We usually do this to:



Include covariates that remove bias to help gain a causal interpretation for other
explanatory variables
Help the identification of the dynamics of the dependent variable (ie. economic
growth)

This only works with long data sets, with inpersistent data, as persistent data leads to
bias.

Identification

Let's assume we have a model:𝑌𝑖𝑡 = β0 + β1𝑋𝑖𝑡1 + β2𝑌𝑖𝑡−1 + 𝐴𝑖 + γ𝑡 + 𝑒𝑖𝑡
Where A is the fixed effects for i and is the fixed effects over time. To identify all theγ
parameters we would assume conditional independence:

E ,[𝑒𝑖𝑡|𝑋𝑖𝑡1 𝑌𝑖𝑡−1𝐴𝑖, γ𝑡] = 0
= 0𝐶𝑜𝑣(𝑒𝑖𝑡,𝑋𝑖𝑡1) 
= 0𝐶𝑜𝑣(𝑒𝑖𝑡,𝑌𝑖𝑡−1) 

= 0𝐶𝑜𝑣(𝑒𝑖𝑡,𝐴𝑖) 
= 0𝐶𝑜𝑣(𝑒𝑖𝑡,γ𝑡) 

We do run into an issue, as errors over time in some models are covariant. For
example, when measuring country GDP over time, it is reasonable to assume that the
residuals are covariant in different years. This is known as serial correlation in the
errors and can be due to culture, institutions or country attitudes.

0𝐶𝑜𝑣(𝑒𝑁𝑒𝑡ℎ𝑒𝑟𝑙𝑎𝑛𝑑𝑠,1974,𝑒𝑁𝑒𝑡ℎ𝑒𝑟𝑙𝑎𝑛𝑑𝑠,2010) ≠  
This serial correlation can be expressed in an equation, for instance:𝑒𝑖𝑡 = γ𝑒𝑖𝑡−1 + 𝑢𝑖𝑡 
Where expresses the new error term. This is known as an autoregressive process of𝑢𝑖𝑡
order 1 (as it has 1 lag). Here lagged errors are allowed to clump together, while 𝑢𝑖𝑡
are random shocks. Adding more lags into the model clumps together the errors
more.



In our model we have the term , which is equal to:𝑌𝑖𝑡−1𝑌𝑖𝑡−1 = β0 + β1𝑋𝑖(𝑡−1)1 + β2𝑌𝑖𝑡−2 + 𝐴𝑖 + γ𝑡 + 𝑒𝑖𝑡−1
This show that is dependent on which means it is covariant with the error𝑌𝑖𝑡−1 𝑒𝑖𝑡−1
term and that causes a failure in conditional independence.

0𝐶𝑜𝑣(𝑒𝑖𝑡,𝑌𝑖𝑡−1) ≠
How do we fix this, by adding more lags of the dependent variable to the model, this
will remove some serial correlation. We keep adding lags till the serial correlation is
statistically insignificant.

To identify the equation, we can use fixed effects if we have many periods, as .𝑒𝑖𝑡 =  0
However, in short panels with less than 20 time periods we cannot use this, instead
we will use the Arellano-Bond Estimator. This exists out of taking the first difference of
our model: (𝑌𝑖𝑡 − 𝑌𝑖𝑡−1) = β1(𝑋𝑖𝑡1− 𝑋𝑖(𝑡−1)1) + β2(𝑌𝑖𝑡−1 − 𝑌𝑖𝑡−2) + (𝑒𝑖𝑡 − 𝑒𝑖𝑡−1)
However this does not satisfy our conditions as the cov( , ) 0,𝑌𝑖𝑡−1 − 𝑌𝑖𝑡−2 𝑒𝑖𝑡 − 𝑒𝑖𝑡−1 ≠
since is dependent on . Thus we use an instrumental variable to fill in for𝑌𝑖𝑡−1 𝑒𝑖𝑡−1

. We can use or any late lag as the IV as these do not depend on (𝑌𝑖𝑡−1 − 𝑌𝑖𝑡−2) 𝑌𝑖𝑡−2
the error terms. This will give us a causal regression

Estimation

In Stata we can use xtreg Y X, fe robust to regress panels with data over a longer
period of time, and xtabond for short panels.

When estimating regressions, we can have issues with high persistence, which
means that the change in Y just a cumulation in random shocks:𝑌𝑖𝑡 = ξ𝑖𝑡 + ξ𝑖𝑡−1 + ξ𝑖𝑡−2 +... + 𝑌𝑖𝑡−100 
This would mean that Y changes in no clear directions and results in an estimation
that is not causally interpretable. For example if X is also very persistent it could result
in a very large even if there is no causal effect, due to the random walk of bothβ1
variables.



Applied Econometrics – masters
course – Lectures 11&12 - week 6
This week discusses limited dependent variables (LDV) models. These are models
where the dependent variable is a binary or limited value. An example of such a
value could be the colour of a bike (yellow, blue or grey) or whether a book is
available in a library (yes or no). So we model conditional probabilities instead of a
conditional mean.

Linear probability model(LPM)
The linear model has linear parameters, so we still estimate a model that could look
like the following model: 𝑌𝑖 = β0 + β1𝑋𝑖1 + 𝑒𝑖
The interpretation of these models is easy, in the one above for example, an increase
of 1 in X is associated with a %-point increase in the chance that Y=1. This meansβ1
that for lower values of X, the marginal effect is the same as for high values of X. So
the partial effects do not depend on Xi. A disadvantage is that if X is then really high
(or low), the value of Y could be higher than 1 (or lower than 0), which is a strange
outcome, since chances are always between 0 and 1.

Nonlinear probability models
To solve this problem of outcomes higher than 1 and lower than 0, we could use a
nonlinear probability model, which looks like the following:𝑃(𝑌𝑖 =  1|𝑋𝑖) = 𝐹(𝑋𝑖β)
Where in the model above Xi is a vector that represents all X’s in the regression. Now
the interpretation is less easy, since the effect of depends on how large X is. Weβ1
could instead use the marginal effect at the mean of Xi or the average effect for all
X’s to still have an easy but less precise interpretation.



Another problem is the modelling of our ignorance. In the case of classification or
prediction of Y, the problem is not extremely important, but if we want to have causal
interpretations, we need to specify the error term. We have 3 ways to do this:

1. Probit, where ei is normal with a mean of 0, a variance of 1 and a cumulative
distribution function. 𝐹 𝑋𝑖β( ) = Φ(𝑋𝑖β)

2. Logit, where ei is logistically distributed. , where exp is an𝐹 𝑋𝑖β( ) = 𝑒𝑥𝑝 𝑋𝑖β( )1+𝑒𝑥𝑝 𝑋𝑖β( )
exponential function

3. LPM, where ei is uniformly distributed over the interval [0,1]. , where if𝐹 𝑋𝑖β( ) = 𝑋𝑖β
, is 0, if , is 1𝑋𝑖β≤0 𝐹 𝑋𝑖β( ) 𝑋𝑖β≥1 𝐹 𝑋𝑖β( )

These models are usually estimated by maximum likelihood. This method changes
the parameters in our model in such a way that the estimated parameters have the
highest chance of observing the data we have used.

In this model we cannot estimate the errors in the traditional way, therefore we can
use either the pseudo R2 (which looks like the normal R2), or the likelihood ratio index
(LRI). The LRI is calculated in the following way:𝐿𝑅𝐼 =  1 − 𝑙 β̂( )𝑙0
Where is the log likelihood estimation of , and is the log likelihood of 0. When𝑙 β̂( ) β̂ 𝑙0
then the is closer to being 0, LRI is closer to zero, while if is further away from𝑙 β̂( ) 𝑙 β̂( ) 𝑙0
, so the coefficients are less likely to be 0, LRI is closer to 1.

Utility maximization

We could use these models to estimate the utility of people, where people make a
decision, for example, to buy or not buy a good. We can then exploit this binary
choice to build a model to estimate peoples utility.

Sample selection corrections
Sometimes we miss observations that we need for our regression to say something
about the whole population. A classic example is the wage of people that do not
work. This wage cannot be observed, but without these data we cannot say anything
about the whole population, only about the people that work and receive a wage.



We can restore identification by using the inverse mills ratio, and use this as a control
variable in our regression. We can do this in the following way. Suppose Si is a
dummy that is 1 if I is sampled and 0 if I is not sampled.

First, we estimate a probit regression on Si to estimate the chance that Si=1:𝑃(𝑆𝑖 = 1|𝑋𝑖1, 𝑋𝑖2) =  Φ(γ0 + γ1𝑋𝑖1 + γ2𝑋𝑖2)
Then we plug these estimates of , and into a probability distribution functionγ0 γ1 γ2
(pdf) and into a cumulative distribution function (cdf). The inverse mills ratio (IMR) is
then equal to: 𝐼𝑀𝑅 = λ̂𝑖 = 𝑝𝑑𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑐𝑑𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛
Then we can use as a variable in our main regression to gain consistent estimatorsλ̂𝑖
of βi. Be careful that it is better to have at least one variable in the estimation of Si
that is excluded in the main regression.

Poisson models
Sometimes Y is not in between 0 and 1, but is a nonnegative integer. In this case a
linear model could give strange results as well. Therefore we can use the Poisson
distribution with parameter λ. Under a Poisson distribution Y is a nonnegative integer,
where the chance of taking one of these values is:𝑓(𝑌) = 𝑒𝑥𝑝 −λ( )λ𝑌𝑌!
Where Y! is the factorial of Y, and where . This means that a poissonλ = 𝑉𝑎𝑟 𝑌( ) = 𝐸(𝑌)
model is heteroskedastic by assumption. f(Y;λ) is now defined as the likelihood
function for our sample.

In this model we assume that: 𝐸(𝑌𝑖|𝑋𝑖) = 𝑒𝑥𝑝(𝑋𝑖β)
Where Xi is again a vector, so that:𝑓(𝑌𝑖|𝑋𝑖; β) = 𝑒𝑥𝑝 −𝑒𝑥𝑝(𝑋𝑖β)( )𝑒𝑥𝑝(𝑋𝑖β)𝑌𝑖𝑌!



Here we use again the maximum likelihood to estimate β. When X is discrete, 100β1 is
the percentage change in caused by a change in X. If X is continuous, 100β1 is(𝑌𝑖|𝑋𝑖)
the percentage change is caused by a small change in X. If X is then measured(𝑌𝑖|𝑋𝑖)
in levels, 100β1 is interpreted as a semi-elasticity, while if X is measured in logs, 100β1
is interpreted as an elasticity.
The variance of a poison model has sometimes consequences on our assumptions,
therefore relax them and let: 𝑉𝑎𝑟(𝑌𝑖|𝑋𝑖1) = σ2𝐸(𝑌𝑖|𝑋𝑖1)
Where is a parameter that we estimate. However if it is larger than 1, it impliesσ2
overdispersion. Overdispersion arises when the observed variance is higher than the
variance of a theoretical model, in this case the Poisson model. This overdispersion
arises when we observe many 0's in our Yi.

Econometrics of gravity equation
In international trade the Poison model is used to estimate the gravity equation:𝑇𝑖𝑗 = β0𝑌𝑖β1𝑌𝑗β2𝐷𝑖𝑗β3
where we would like to measure the β1, β2 and β3 and where:

Tij is the trade flow from country i to country j
Yi is GDP of country i and Yj the GDP of country j
Dij is the distance between i and j, either cultural, geographical or another
important factor that describes distance

We model: 𝐸(𝑇𝑖𝑗|𝑌𝑖, 𝑌𝑗, 𝐷𝑖𝑗) = β0𝑌𝑖β1𝑌𝑗β2𝐷𝑖𝑗β3
Where the error is:

, so that:𝑒𝑖𝑗 = 𝑇𝑖𝑗𝐸 𝑌𝑖,𝑌𝑗,𝐷𝑖𝑗( )  𝐸(𝑒𝑖𝑗|𝑌𝑖, 𝑌𝑗, 𝐷𝑖𝑗) =  1
In this case, the conditional variance looks like this:𝑉𝑎𝑟(𝑒𝑖𝑗|𝑌𝑖, 𝑌𝑗, 𝐷𝑖𝑗) = 𝐸(𝑒𝑖𝑗2|𝑌𝑖, 𝑌𝑗, 𝐷𝑖𝑗) − 1
Here the squared deviation depends on Yi, Yj and Dij, because it is a less restrictive
assumption than when it would be constant, and because different values could
have different variances. Some small countries are far away from each other and the



trade flows between these countries is very low, probably even zero. These pairs will
have a different variance than all other country pairs that do have a reasonable
trade flow between them.

The traditional way to then estimate the regression would be to use logs and
estimate the following linear model:𝑙𝑛(𝑇𝑖𝑗) = 𝑙𝑛(β0) + β1𝑙𝑛(𝑌𝑖) + β2𝑙𝑛(𝑌𝑗) + β3𝑙𝑛(𝐷𝑖𝑗) + 𝑙𝑛(𝑒𝑖𝑗)
However, the error is measured in the following way:𝐸[𝑙𝑛(𝑒𝑖𝑗)|𝑌𝑖, 𝑌𝑗, 𝐷𝑖𝑗] = 0
But because we now use a log linear model, it will give inconsistent estimators if we
have heteroskedasticity. That is because the error, ), is a nonlinear function.𝑙𝑛(𝑒𝑖𝑗
Another problem is that by taking a log, we lose all country pairs that have a trade
flow of 0 (log of 0 does not exist). We could therefore set the trade flow to ln(Tij+1), to
use these observations in our regression. The heteroskedasticity problem remains
unsolved.

We could use a Poisson model to overcome both problems. In Stata we could use the
command:

poisson Tij Dij Yi Yj covariates, robust
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