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Introduction to mathematics – IBEB 

– Lecture 1 & 2 – week 1 & 2 

Basic algebra and equations 
 

Logic(Implication Arrows) 
 

A⇒B 
“A implies B” 
“A is a sufficient condition for B” 
“B is a necessary condition for A” 
 
It is important to remember that even if A implies B, this does not always mean that B 
implies A. 
 
If A implies B, AND B implies A, then we can use the equivalency arrow “⇔” 
 

A⇔B 
 

This arrow can be used in “if and only if” statements. 
 

Powers 
 

Table of power rules (+, −,×,÷) 
 

Name of the rule Rule Example 

Product  
x a ⋅ x b = x a+b 22 ⋅ 23 = 22+3 = 32 

x a ⋅ y a = (x ⋅ y) a 22 ⋅ 32 = (2⋅3)2 = 36 

Quotient  
x a / x b = xa-b 26 / 21 = 26-1 = 32 

x a / y a = (x / y) a 44 / 24 = (4/2)4 = 16 

http://www.rapidtables.com/math/number/exponent.htm#product
http://www.rapidtables.com/math/number/exponent.htm#quotient


 

Power  

(ya)b = ya⋅b (24)3 = 24x3 = 4096 

a√(yb) = y b/a 3√(29) = 29/3 = 8 

y1/2 = √y 161/2 = √16 = 4 

y1/a = a√y 161/4 = 4√16 = 2 

Negative index 
(exponent) 

y-a = 1 / ya 2-2 = 1/22 = 0.25 

“0” rules 

y0 = 1 30 = 1 

0a = 0, for a > 0 06 = 0 

0a is not defined if a ≤ 0 
(this would result in dividing by 
0) 

“1” rules 
y1 = y 101 = 10 

1n = 1 1542 = 1 

 
All of the basic algebra rules can be applied in any kind of equation as long as the 
rules are respected (e.g. for fractional powers we can apply both the rules for fractions 
and for powers).  
 

Fractional powers 
 
A fractional exponent or power is an alternate notation for expressing powers and 
roots together (Betty, Brat. Medium.com, 2015) For example, 𝑎12 =  √𝑎 𝑎1𝑏 =  √𝑎𝑏

 

 
where we could see how we write the power in the numerator and the index of the root 
in the denominator. 
 
 
 
 

http://www.rapidtables.com/math/number/exponent.htm#power
http://www.rapidtables.com/math/number/exponent.htm#negative
http://www.rapidtables.com/math/number/exponent.htm#negative


 

Calculations with square roots 

 
1. √𝑎 ⋅ 𝑏 = √𝑎  ⋅ √𝑏 

2. √𝑎𝑏 = √𝑎√𝑏  

Where b ≠0 
Note: √𝑎 + 𝑏 ≠ √𝑎 + √𝑏 

 
 

Fractions 
 
A fraction is a part of a whole. Its main characteristics are the numerator, the number 
or function that can be found above the fraction line, and the denominator, the 
number or function that is under the fraction line. 
 
Recall that: 𝑎 ÷ 𝑏 =  𝑎𝑏 

 
Where a is the numerator and b is the denominator. 
 

Properties of fractions (+, −,×,÷) 

 

1. 
𝑎𝑏 ± 𝑐𝑑 = 𝑎𝑑±𝑏𝑐𝑏𝑑  

2. 
𝑎𝑏 × 𝑐𝑑 = 𝑎𝑐𝑏𝑑 

3. 
𝑎𝑏 ÷ 𝑐𝑑 = 𝑎𝑑𝑏𝑐  

4. 
11𝑎 = 𝑎 

5. 
𝑎𝑎+𝑏 ≠ 𝑎𝑎 + 𝑎𝑏, where a, b, a+b ≠ 0 

 
Useful tip: 

 

When solving fractions: 



 

- Always simplify the fractions as much as possible before trying to calculate 
them (for example, by using the properties of fraction to make it as simple as 
possible) 

- Try to bring the fractions to a common denominator by factorizing  

Simplification/amplification 
 
Let x, y, z be three real numbers, with b, c ≠ 0. 
 𝑎𝑐𝑏𝑐 = 𝑎𝑏 × 𝑐𝑐 = 𝑎𝑏  is an example of simplifying fractions. 𝑎𝑏 = 𝑎𝑏 × 𝑐𝑐 = 𝑎𝑐𝑏𝑐  is an example of amplifying fractions. 

 
Rationalisation of fractions with radicals 

When a fraction’s denominator contains radicals, for example:  𝑝𝑐 ± √𝑑 

we rationalise it by multiplying top and bottom by the conjugate of the denominator. 

Conjugate: 

.If the denominator is 𝑐 + √𝑑 , the conjugate is 𝑐 − √𝑑 (and vice-versa). 

The product of a term and its conjugate is a difference of squares: (𝑐 + √𝑑)(𝑐 − √𝑑) = 𝑐2 − 𝑑 

which is always rational when 𝑐 and 𝑑 are real numbers. Therefore, we can rationalise 
our denominator by multiplying the conjugates in the denominator: 𝑝𝑐 + √𝑑 × 𝑐 − √𝑑𝑐 − √𝑑 = 𝑝(𝑐 − √𝑑)𝑐2 − 𝑑  

The denominator becomes 𝑐2 − 𝑑, free of radicals 

Example: 



 

42+√3 × 2−√32−√3 = 4(2−√3)22−3 = 8−4√34−3 = 8 − 4√3  

 
 

Inequalities 
 
If “a” is a positive number, we write a > 0 (or 0 < a), and we say that a is greater than 
zero. If the number c is negative, we write c < 0 (or 0 > c).  

● The principles for solving inequalities are quite similar to the rules for solving 
linear equations, and they are easy to remember. In the case of negative 
numbers, there is one exception: when multiplying or dividing by a negative 
number 

o When multiplying inequalities, do not forget to flip the sign if you multiply 
or divide the equation with a negative.  

 

Properties of inequalities 
 
Let a, b, c, and d be numbers: 

1. (a>b and b>c) ⇒ a>c 

2. (a>b and c>0) ⇒ ac>bc 

3. (a>b and c<0) ⇒ ac < bc 

4. (a>b and c>d) ⇒ a+c>b+d  

 

The sign table 
 
The sign table is used to determine the sign of a function when knowing the simple 
factors that compose it through different operations (like multiplication, division). This 
could be used to solve inequalities directly or when asked to determine the values of 
x for an expression when it is either negative, positive or zero. 
 
Example 1: Find the values of x for which (x-2)(x-7)(x2-9)>0. 
 
First, we decompose the left side of the inequation into simpler terms. We have:     x2-
9 = x2-32 = (x-3)(x+3). This leads to the simplest decomposed form of the inequation: 
(x-2)(x-7)(x-3)(x+3)>0.  
 



 

In order to create the sign table, we need to determine the sign of each of the 
brackets. Therefore, x-2 is positive when x>2, negative when x<2 and 0 when x=2. We 
apply the same rule for the rest of the brackets. 
 
There are much more complicated functions in brackets that necessitate more 
operations in order to determine their sign (like differentiation). And so, let us create 
the sign table for the expression (x-2)(x-7)(x-3)(x+3), to determine for which values 
of x it is positive. 
 

x -∞ -3 2 3 7 +∞ 

x+3 ---------
----- 

-------
0+++ 

+++++++ ++++++ ++++++++ ++++++ 

x-2 ---------
----- 

--------
----- 

------
0+++ 

++++++ ++++++++ ++++++ 

x-3 ---------
----- 

--------
------ 

---------
---- 

------
0+++ 

++++++++ ++++++ 

x-7 ---------
----- 

--------
------ 

---------
----- 

--------
------ 

-------
0+++ 

++++++ 

Expression ++++++++ ++++0--
--- 

------
0+++ 

+++0----
--- 

-------
0+++ 

++++++ 

 
From the sign table we notice that the expression is positive for x ∈ (-∞,-3) ∪ (2,3) ∪(7, ∞), zero for x = -3, 2, 3, 7 and negative for the rest of the values. 
 
Useful tip:  

As shown on the example above, before using the sign table to determine the sign of 
the function, we can break down the equation into different parts in which they are 
multiplied by.  
 
Example: 

Determine the values of x for which the expression is positive, zero and negative. −(𝑥 − 1)2 𝑥2−22𝑒𝑥−4 
Break down of expression into several parts: 

1. −(𝑥 − 1)2 
2. 𝑥2 − 2 
3. 12𝑒𝑥−4 

 



 

And then continue on determining the sign for the values of x in each separated 
function using the sign table as shown in example 1. 

 

Intervals 
 
(a,b) - Open interval from a to b 

- A < x < b 
 

[a,b] - Closed interval from a to b  
- A ≤ x ≤ b 

 
(a,b] - Half-open interval from a to b 

- a < x ≤ b 
 

[a,b) - Half-open interval from a to b 
- a ≤ x < b 

 
A∈B  - A is a member of set B, ie. A belongs to set B 
x ≥ 1 : we can also write as x ∈ [1,∞), in which “∞” means infinity.  
 

Absolute values 
 
The absolute value of a number defines how far away it is from zero on the number 
line, without taking into account its orientation. 
|b| = {b if b is greater than or equal to 0; -b if b is less than 0} 
“b” is called the “argument” 
 

solving linear absolute value equations  
 
Step 1: The absolute value must be isolated 
Step 2: Identify: What is the isolated absolute value equal to? 

● If absolute value = 0: Remove the absolute value symbols from the equation 
and solve it to obtain a single result. 

● If absolute value < 0: no solution  
● If absolute value > 0: Insert an ‘or' statement in between the two equations and 

may make the "argument" equal to both the number and the number's 
opposite. Then, for each equation, solve it independently to obtain two possible 



 

answers. Then, for each equation, solve it independently to obtain two possible 
answers. 

 

solving linear absolute value inequalities 
 
Step 1:  The absolute value must be isolated 
Step 2: Identify: What is the isolated absolute value equal to? If…  
 

“Negative” “Positive” 
● The answer 

consists entirely 
of real numbers 
if the absolute 
value is higher 
than, or more 
than or equal 
to, a negative 
number. 
Anything with a 
positive 
absolute value 
will always be 
greater than 
something with 
a negative 
absolute value. 

● There are two methods to tackle the problem if the 
absolute value is less than or equal to a positive 
number, depending on the situation. In either case, 
the answer will be expressed as an intersection.  

o The argument should be placed in a three-part 
inequality (compound) between the opposite 
of the number and the number, then solve 

o Set the argument so it is smaller than the 
number and bigger than the number's 
opposite. Do not forget to insert an "and" 
statement between the two inequalities. 

● If the absolute value is higher than or equal to a 
positive number, use a 'or' expression to set the 
argument less than the opposite of the number and 
larger than the number. Then, for each inequality, 
solve it by expressing the solution as a union of the 
two. 

 

“Zero” 
● If absolute value < 0: no solution  

● Whenever the absolute value is less than or equal to zero, there is only one 

possible solution. Simply set the parameter to zero and solve the problem. 
● As long as the absolute value is higher than or equal to zero, the solution is 

comprised entirely of real numbers. 

● As long as the absolute value is larger than zero, the solution is composed of 
all real numbers, with the exception of the value that brings it equal to zero. 
This will be written in the form of a union. 

 



 

Step 3: Graph the resulting numbers on a number line and write the answer in 
interval notation. 
 

Summations 
 
The sum, from i = 1 to i = n, of xi is, 

 
 

Functions 
 
A function with domain A is a rule that each real variable x in A assigns a single real 
number f(x) (Sydsæter et al., 2021, p.101). 
 
Follow the form y = f(x) 

“x” “y” 

- Independent variable  
- Also called argument  
- Domain: All possible values for x  

- Dependent variable 

- Range: All possible values for y  
 

 

The simple form of a function 
 
A function is usually composed of three things:  

- domain: the input set of numbers 
- range: the output set of numbers 
- The relationship that defines the function 

 
A function is usually defined as follows:  
Let f be a function, f: A → B, f(x)= *form of the function* 
 
Consider the function f(x) = y : 

The values of x that we allow for f constitute the domain of f .  
The values y such that y = f (x) for at least one x in the domain of f , constitute 
the range of f . 

 
Example: 



 

f: R → R, f(x)= 5√(x+1), where R is the set of real numbers. Compute f(0) and f(31). 
By replacing x with 0 and 31 respectively we obtain: f(0)= 5√(0+1)= 5√1= 1 and f(31)= 
5√(31+1)= 5√32= 2. 
 

Equation of a line 
 
The equation of a line is represented by y = mx + c, whereas m is the gradient, or slope, 
(a>0 means the line is increasing and a<0 means the line is decreasing) and b is the 
distance to the origin. This could be seen in many economic models, such as the 
demand curve (D=a-bP) and the supply curve (S=a+𝛽P). 
 

Linear functions  
 
Follow the form y = f(x) = ax + b 

“a” “b” 

- Slope  
- If a>0, f(x) is an increasing 

function 

- If a<0, f(x) is a decrease function 

- Distance to the origin 

- Measures along the y-axis  
- Root:  

                ax + b = 0 ⇒ x = − b/a  
  

Polynomials 
 

General form 
 
A polynomial of degree n is a function of the form 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +  𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = ∑𝑛𝑖=0 𝑎𝑖𝑥𝑖 , with 𝑎𝑖 being parameters, where i takes all the values from 0 through n. 
Consider the integer n, numbers a0, a1, ... , an, with an ̸= 0, and the variable x. A 
polynomial of degree n is a function of the form: 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 +. . . +𝑎𝑛𝑥𝑛 

 
General form of function (or called “cubic functions”): 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 

 
Example: 𝑓(𝑥) = 1 + 10𝑥 +  25𝑥2 + 𝑥3 is a third-degree polynomial. 
 

Special polynomials 



 

 

 

1. Linear Polynomial: the highest degree of x is 1. Its form is f(x)=ax + b, with a, b 
being real numbers. 

2. Quadratic Polynomial: the highest degree of x is 2. Its form is f(x)= ax2+bx+c. 
with a, b, c being real numbers. 

 

Polynomial division  
 
When dividing polynomials, it is possible that we will need to factor the polynomials in 
order to discover a common factor between the numerator and denominator. 
 

For example:  
(𝑥2−25)(𝑥−5)  = 

(𝑥−5)(𝑥+5)(𝑥−5)  = (𝑥+5)1  

 
When we cannot discover the factors of a number in a short division procedure, we 
can utilize a longer division method. 

● To get the quotient, divide the dividend by the divisor, then multiply the quotient 
by the divisor and subtract. 

● To get the next term of the quotient, just divide the first term of the remaining 
dividend by the first term of the divisor, which yields the next term of the 
quotient. 

 

Polynomial division 
 
Polynomials can be divided using the polynomial division rule. When dividing one 
polynomial with another, we stop the division when the remainder’s degree is smaller 
than the divider’s. The polynomial that is being divided is called dividend and the one 
that divides is called dispenser. The polynomial that is left and can no longer be 
divided is called remainder. 
 
Example: (x4+3x3+10x+3) ÷ (x2+1) = x2+3x-1 
-x4-x2 
  / 3x3-x2+10x+3 
    -3x3 - 3x 
       / -x2+7x +3 
  x2 + 1 
     / 7x+ 4    remainder 
 



 

Hence, (x4+3x3+10x+3) ÷ (x2+1) = x2+3x-1- -7𝑥+4𝑥2+1 

 
Example 2: (2𝑥3 + 2𝑥 − 1) ÷ (𝑥 − 1)  (𝑥 − 1) /(2𝑥3 + 2𝑥 − 1)\ 2𝑥2 + 2𝑥 + 4 
        2𝑥3 − 2𝑥2 
                               2𝑥2 + 2𝑥 − 1                                2𝑥2 − 2𝑥                                            4𝑥 − 1                                             4𝑥 − 4                                                       3.    remainder 
 

Hence, (2𝑥3 + 2𝑥 − 1) ÷ (𝑥 − 1) =  2𝑥2 + 2𝑥 + 4 − 3𝑥−1 

 

Equations 
 

Equations can appear in all sorts of forms and with all sorts of variables (e.g. fraction 
equations, power equations, logarithmic equations). 
 

Special equations 
 
Special equations are, as mentioned above, for example the linear and quadratic 
equations. The quadratic equation’s basic form is ax2 + bx + c = 0. To solve it we need 
to calculate the discriminant denoted with ∆=b2-4ac. The solutions of the equation are 𝑥1,2 = −𝑏±√∆2𝑎  and the decomposed form of the equation is 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2). 

 

Quadratic equation 
 
Quadratic Equation Form: 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 
 

Quadratic Formula:  𝑥 = −𝑏±√𝑏2−4𝑎𝑐2𝑎  

 
Where both “a” and “b2-4ac” are not equal to 0. 
 
Quadratic functions have an exponent with the highest degree of 2. Graphs of 
quadratic functions are parabolas. 
 
To solve for “x” in quadratic functions, use: 



 

o Factorization  
o Quadratic Formula  

 

discriminant of a quadratic equation ∆=b2-4ac 

When ∆>0 there are two distinct real roots (two real solutions) 

When ∆=0 there are one real root (one real solution) 

When ∆<0 there are no real roots (no real solutions) 

 

Exponential functions 
 

F(x) = ax,  a>0,  f>0 
What is “e”? 
 
“e” is Euler's number (named after Leonhard Euler). It is approximately 2.71828. In 
mathematics, "e" is the base rate of growth that is shared by all continuously 
developing processes. 

Ln(1) = 0 ⇔ f(x) = ln(x), only if x>0 
Ln(e) = 1 & ln(1) = 0 

 

Logarithmic functions 
 𝑎𝑥 = 𝑏  ⟺  𝑙𝑜𝑔𝑎𝑏 = 𝑥 

● a>0 (the base must be positive and not equal to 1) 
● b>0 (the argument must be positive) 
● If 𝑒𝑥 = 𝑏, then 𝑥 = 𝑙𝑛 𝑏  (𝑙𝑜𝑔𝑒𝑏 is written as 𝑙𝑛 𝑏) 

For all x > 0 and y > 0, 
ln(xy) = ln(x) + ln(y) 
ln(𝑥𝑦) = ln(x) - ln(y) 

ln(1𝑥) = -ln(x) 

ln(xn) = n ln(x)  𝑙𝑜𝑔𝑎𝑘  (𝑥) = 1𝑘  𝑙𝑜𝑔𝑎 (𝑥) 

Key Tips 



 

● Always simplify with log rules before moving to algebra. 
● For any logarithm, the argument must remain positive. 
● When bases differ, use the change-of-base rule: 

𝑙𝑜𝑔𝑎𝑏 = 𝑙𝑜𝑔𝑐𝑏𝑙𝑜𝑔𝑐𝑎 

Introduction to mathematics – IBEB 

– Lecture 3 – week 3 

Inverses and derivatives 
 

Shifting of graphs 
 
The graph of a function can be shifted on the axes “x” and “y” by adding or subtracting 
a parameter to the argument and to the value of the function accordingly. Shifting the 
graph of a function on “y” can be done by simply adding a parameter (with the sign + 
or -) to the defined value of the function, in which the rules as defined is: 
  
Shifting rules when c,d > 0: 

f(x) + c shifts the function upwards by c 

f(x) – c shifts the function downwards by c 

f(x+d)  shifts the function to the left by d 

f(x-d) shifts the function tot he right by d 

  
Example: Given a function f(x)=3x+2, Shift the equation to the right by 3 units and 
upwards by 5 units 𝑓(𝑥) = 3(𝑥 − 3) + 2 + 5 ⟹ 𝑓(𝑥) = 3𝑥 − 9 + 2 + 5 ∴ 𝑓(𝑥) = 3𝑥 − 2 

 



 

Stretching and reflecting graphs 
 
Reflection on the y-axis 

 𝑓(𝑥) → 𝑓(−𝑥) 
Example: 

 
 
Reflection on the y-axis 

 𝑓(𝑥) → −𝑓(𝑥) 
Example: 

 

 

Composite functions 
 
Given two functions f(x) and g(v), the composition of g with f is the function 
h(x) = g(f(x)). 



 

The composition of g with f is written as “ g ∘ f”. 

Inverse functions 
 
An inverse function (or anti-function) is a function that "reverses" another function: if 
the function f applied to an input x gives a result of y, then applying its inverse 
function g to y gives the result x, and vice versa.  
Graphically, the inverse will be the reflection of the original function in the line y=x 

1 
Consider the function F(x) = y, 
If for every x in the domain off, and for every y in the range of f it holds that  
g(y) =x ⇔ y=f(x), then we call g the inverse of f. 
 
So, x=g(x) and y=f(g(y)) 
 
Inverse of f is denoted by 𝑓−1 and the domain of f is the range of 𝑓−1 and vice versa. 
 
Note: exists only for the “one-to-one” functions: for each y in the range of f, there exists 
only one x such that y=f(x) where f is strictly increasing or decreasing. 
 
Example: 𝑓(𝑥) = 3𝑥 + 2 𝑦 = 3𝑥 + 2 

 
1 Graph from Calcworkshop.com 

https://en.wikipedia.org/wiki/Function_(mathematics)


 

 (move the variables to the left-hand side with the letter y while leaving the x-
variable on the other side) 𝑦 − 2 = 3𝑥 𝑦 − 23 = 𝑥 𝐻𝑒𝑛𝑐𝑒, 𝑓−1(𝑥) = 𝑥−23  or 𝑓−1(𝑦) = 𝑦−23  (doesn’t matter what variable you use) 

 
Useful tip: As the domain of f is the range of 𝑓−1 and vice versa, when solving problems 
that ask about the range or domain of a certain inverse function, it is not necessary to 
find the inverse of the function first, yet, you can answer directly by finding the domain 
or range of the actual function given.    

 
Example: 

Find the domain of the inverse function 𝑓(𝑥) = 3𝑥+2𝑥−2  

As you can see, the domain of the inverse function is the range of the function 
f(x). Hence, we can note that the range of function f(x) is 3, thus the domain of 𝑓−1(𝑥) is 3. 

 

How to find the inverse functions 
 

1. Replace f (x) with y. 
2. Replace all “x” to “y” & replace all “y” to “x” 
3. Solve the equation for “y” 
4.   Replace “y” to 𝑓−1(𝑥). This is the inverse function! 

  

Introduction to limits 
 

Let f(x) be a function defined on an interval that contains a parameter q. The limit of 
f(x) is denoted as: 

 
 
It shows the value that f(x) approaches when x is chosen arbitrarily close, but not 
equal, to a.  
 
Example: 

 



 

It could be seen that the function is not defined when x=0, thus, 𝑥 ≠ 0 and 0 is not on 
its domain. Therefore, we can conclude that the limit is very close to 0. 
 
What we can do is to check numbers, what numbers does it get very close to, in this 
case, it would get closer to 1. 

 

Possible ways to find limits 
 
There are different ways to try to find a limit. If one method leads to an undefined 
number, try another way. These are some methods of find the limit:  

1. Plug-in or substitute the value of the limit 
2. Factor the equation and see if some terms cancel out 
3. Get a common denominator (if the question is a complex fraction) 
4. Expand the equation and simplify  
5. If the equation has a square root, multiply it with it’s conjugate and rationalize 

the equation. 
 

Rules for limits 

 
 



 

Derivative 
 

Derivatives are associated with rates of change (e.g. in Economics: growth rate, 
marginal costs, etc). It is also associated with optimization (e.g. in Economics: when 
trying to maximise profits, minimize costs, etc) 
 
The Newton Quotient (also called difference quotient) is defined as: 𝑓(𝑎 + ℎ) − 𝑓(𝑎)ℎ  

 
The derivative of function f(x) at x=a is defined as the limit of the Newton quotient when 
h tends to 0. 

 
 

The derivative of f(x) is itself a function of x and is denoted by f′(x) 

 
 
To find the difference quotient at a point, we simply have to plug in the “x” value of the 
point to the “a” value in Newton’s Quotient.   
 

Tangent and notation 
 
A tangent is a line that comes into contact with the curve of a function’s graph in only 
one point. A function can have multiple tangents, just as there are functions that have 
no tangents to their graphs (e.g the linear function ax+b). The tangent line At a point 
on the function, the slope of the tangent line is equal to the derivative of the function 
at the same point. 



 

  

(Graphic of tangent of f(x) at point (c,(f(c)) from https://brilliant.org/wiki/tangent-line-
point/) 

  

Thus, the tangent of a function f at the point (a, f(a)) is given by f(a) + f′(a)(x−a) 
 
Example: 
Determine the tangent of f (x) = x2 + x at the point (1, f (1)):  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑎𝑛𝑔𝑒𝑛𝑡: 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) 

Thus, as the question asks at point (1, (f(1)): 𝑓(1) + 𝑓′(1)(𝑥 − 1) 

 
Solution: 
First, we can find f(1) by substituting 1 to f(x): 𝑓(1) = 12 + 1 = 2 

 
Then, we can find f’(2) by differentiating f(x) and substituting 2 to the derivative of 
f(x): 𝑓′(𝑥) = 2𝑥 + 1 𝑓′(1) = 2(1) + 1 𝑓′(1) = 3 

 
Then, we can substitute both results to the formula of tangent as written above: 𝑓(1) + 𝑓′(1)(𝑥 − 1) ⟹ 2 + 3(𝑥 − 1) ⟹ 2 + 3𝑥 − 3 𝑇𝑎𝑛𝑔𝑒𝑛𝑡: 3𝑥 − 1 

 

If y = f(x), then 𝑓′(𝑥) = 𝑑𝑓(𝑥)𝑑𝑥 = 𝑑𝑦𝑑𝑥 = 𝑦′  
 

https://brilliant.org/wiki/tangent-line-point/
https://brilliant.org/wiki/tangent-line-point/
https://brilliant.org/wiki/tangent-line-point/


 

Simple rules for differentiation 
 

Derivative of constant 𝑓(𝑥) = 𝑐 ⇒ 𝑓′(𝑥) =  0 

Derivative of a power 𝑓(𝑥) = 𝑥𝑃 ⇒ 𝑓′(𝑥) = 𝑃𝑥𝑃−1
 

Parameter rule 𝑐𝑓(𝑥) ⇒ 𝑐𝑓′(𝑥) 

Sum rule 𝐹(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) ⇒ 𝐹′(𝑥) =  𝑓′(𝑥) + 𝑔′(𝑥) 

Product formula 𝐹(𝑥) = 𝑓(𝑥)𝑔(𝑥) ⇒ 𝐹′(𝑥) =  𝑓′(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔′(𝑥) 

Quotient rule 𝐹(𝑥) = 𝑓(𝑥)𝑔(𝑥) ⇒ 𝐹′(𝑥) =  𝑓(𝑥)𝑔′(𝑥) − 𝑓′(𝑥)𝑔(𝑥)(𝑔(𝑥))2  

 
Note: 

- The properties may be used twice in a single function (for example, using both 
product rule & quotient rule) to differentiate the whole function. 

- For quotient rule, the order of the formula (which part of the function is 
differentiated first) matters to the results, thus, follow the rule as you can! 
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Advanced differentiation 
 

Chain rule 
 
The chain rule is a formula for computing the derivative of the composition of two or 
more functions: f(g(x)). This is more formally stated because if the functions f (x) and 
g (x) are both differentiable and defined. The rule itself has two forms, as shown: 
 

1. 𝑑𝑓(𝑔(𝑥))𝑑𝑥 = 𝑑𝑎𝑎 𝑑𝑔(𝑥)𝑔(𝑥) , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑔(𝑥) 

 

2. 𝑑𝑓(𝑔(𝑥))𝑑𝑥 =f’(g(x))g’(x) 

 
Where number 1 requires substitution and number 2 is a more direct approach of using 
the chain rule formula. 
 
Example of using number 2: 
Find the derivative of 𝑓(𝑥) = 3(𝑥3 + 1)4 
In this case, we let: 𝑓(𝑥) = 3(𝑥3 + 1)4 and 𝑔(𝑥) = 𝑥3 + 1 
 
Formula: f’(g(x))g’(x) 
 
Therefore, we can now find f’(x) and g(x): 𝑓′(𝑥) = 12(𝑥3 + 1)3 and 𝑔′(𝑥) = 3𝑥2 
 
Therefore, the derivative of 𝑓(𝑥) = 3(𝑥3 + 1)4would be: 𝑓′(𝑥) = 12(𝑥3 + 1)3(3𝑥2) ⇒ 𝑓′(𝑥) = 36𝑥2(𝑥3 + 1)3

 

 
Higher-order derivatives 



 

 
Higher order derivatives are the derivative of a derivative, where the derivative of the 
derivative of f is denoted as a second-order derivative of f. 
 𝑓′′(𝑥) = 𝑓(2)(𝑥) = 𝑑𝑑𝑥 (𝑑𝑓(𝑥)𝑑𝑥 ) = 𝑑(2)𝑓(𝑥)(𝑑𝑥)2  

or, 𝑓(𝑛)(𝑥) = 𝑑(𝑛)𝑓(𝑥)(𝑑𝑥)𝑛  

 
Example: 
Determine the third order derivative of 𝑓(𝑥) = 𝑥4 + 𝑥2 
The steps to find the third order derivative would be to differentiate the function 3 
times (until third order), thus: 
 
First order: 𝑓′(𝑥) = 4𝑥3 + 2𝑥 
Second order: 𝑓′′(𝑥) = 12𝑥2 + 2 
Third order: 𝑓(3)(𝑥) = 24𝑥 
 
* We can keep looking for derivatives of a derivative. We obtain the second derivative 
by deriving the first derivative, the third derivative by deriving the second derivative, 
and so on till the nth derivative. 
 

Increasing and decreasing functions 
 
Using derivatives, we can determine exactly where the function increases and where 
it decreases. This is done by computing the function’s derivative and making the sign 

table for f’(x). By making the sign table for f’(x) we actually compute the variation 

table of the function. Furthermore, by finding the signs of f’(x), we reach the following 
conclusions: 
 

- If f’(a)>0, then f is strictly increasing at x = a 
- If f’(a)<0, then f is strictly decreasing at x = a 
- If f’(a)≥0, then f is increasing at x = a 
- If f’(a)≤0, then f is decreasing at x = a 

 
Note: If a function is strictly increasing/decreasing, it has an inverse (one-to-one) 

Convex & concave curves 



 

 
Moreover, by using second-order derivatives, we can determine the shape of the 
function, and by using the sign table of the second derivative of f(x), we can actually 
determine where the function is concave and where it is convex, based on the sign of 
f’’(x), such that: 

- If f’’(x)≥0, then f is convex for all x in a specific interval and f’(x) is increasing. 
- If f’’(x) ≤0, then f is concave for all x in a specific interval and f’(x) is decreasing. 

 

 
(https://math.stackexchange.com/questions/1208943/is-gx-log-x-convex-function) 

 

Increasing & decreasing: concave up & concave down 
 

If f′(x)>0 and f′′(x)>0, then f is concave 
up and increasing  
 

The function f(x)=x3 is concave up and 
increasing for x>0 because 
f′(x)= 3x2 >0 
f′′(x)= 6x>0 

If f′(x)>0 and f′′(x)<0, then f is concave 
down and increasing  
 

The function f(x)=x3 is concave down 
and increasing for x<0 because 
f′(x)= 3x2 >0 
f′′(x)= 6x<0 

If f′(x)<0 and f′′(x)<0, then f is concave 
down and decreasing 
 

The function f(x)=−x5 is concave down 
and decreasing for x>0 because 
f′(x) =−5x4<0 
f′′(x) = −20x3< 0 

If f′(x)<0 and f′′(x)>0, then f is concave 
up and decreasing 
 

The function f(x)=−x5 is concave down 
and decreasing for x<0 because 
f′(x) =−5x4<0 
f′′(x) = −20x3 >0 

Derivatives of special functions 

https://math.stackexchange.com/questions/1208943/is-gx-log-x-convex-function


 

 

Logarithmic differentiation 
 
Determining the derivative of a function can sometimes be difficult, so the logarithmic 
differentiation method is preferred instead. Thus, instead of “trying” to compute f’(x), 
we simply compute ln’(f(x))= 𝑓′(𝑥)𝑓(𝑥) , or the formula of: 

 𝑑𝑓(𝑥)𝑑𝑥 = 𝑓(𝑥) 𝑑 𝑙𝑛𝑓(𝑥)𝑑𝑥  

 

Logarithmic functions 
 
For the natural logarithm ln(x), it holds that: 𝑓(𝑥) = 𝑙𝑛 (𝑥) ⇒ 𝑓′(𝑥) = 1𝑥 

 
In order to find the derivatives of functions like ln(f(x)), we simply use the chain rule, 
since ln(f(x)) represents a composition of functions. 
 
Example: 
Find the derivative of 𝑓(𝑥) = (𝑙𝑛 (𝑥))2 
We can see that it requires the usage of chain rule as well as the rule for logarithmic 
differentiation, therefore, 𝑓′(𝑥) = 2(𝑙𝑛 𝑙𝑛 (𝑥) ) (1𝑥) 𝑓′(𝑥) = (2(𝑙𝑛 𝑙𝑛 (𝑥) )𝑥 ) 

 

Derivative of the logarithm 
 
The derivative of the logarithm is as follows:  y’(loga(x))=1 / x ⋅ ln(a) 
 
Example: Find the derivative of y’(log8(x)) 
 = y’(log8(x))=1 / x ⋅ ln(8) 
 
 
 



 

Derivatives of exponential functions 
 

Derivative of exponential functions with “x” in the 
exponent 
 
Now that we've established the natural logarithm, we may discuss exponential 
functions and their derivatives. Additionally, we can now compute the logarithm's 
derivative. 
 
The formula of finding derivative functions is y’(ax)  =ln (a) ⋅ ax 

 
Example: Find the derivative of y’(45x):  

y’(45x)=ln(45)⋅45x 

 
We can also calculate the derivative of ag(x) for a function g(x) using the chain rule. This 
will give 

y’(ag(x) )=ln(a)⋅g′(x)⋅ ag(x)  
 

Derivative of the base “e” 
 
Exponential function’s derivation rule is given: 𝑓(𝑥) = 𝑒𝑥 ⇒ 𝑓′(𝑥) = 𝑒𝑥

 

 

In order to find the derivatives of composed functions like 𝑒𝑒𝑥
, the chain rule must be 

used. Denote ex with u and derive the given function using the chain rule. 
 
Note: The derivative of ex is still ex.  
 

Differentiation of inverse functions 
 
As stated previously, an inverse function (or anti-function) is a function that 
"reverses" another function: if the function f applied to an input x gives a result of y, 
then applying its inverse function g to y gives the result x, and vice versa.  
 
To begin, we'll look at a function and its inverse. If f(x) is both invertible and 
differentiable, the inverse of f(x) should likewise be differentiable. 

https://en.wikipedia.org/wiki/Function_(mathematics)


 

 
We can also find the derivative of the inverse.  
 
Therefore, the derivative of g(x) for f(x)≠0 is where g(x) is the inverse: 𝑔′(𝑥) = 1𝑓′(𝑔(𝑥)) 

 

Implicit differentiation 
 
As functions are not always defined explicitly, implicit differentiation is used in 
computing the derivative of these implicit function. 
 
We differentiate each side of an equation with two variables (typically x and y) using 
implicit differentiation, which is defined as considering one of the variables as a 
function of the other variable. This necessitates the application of the chain rule. 
 
Note: The implicit differentiation is usually applied when a “y” is defined implicitly.  
 
Example:  
Find the derivative of y with respect to x, with y implicitly defined as:  𝑦2 + 4𝑥2 = 7 − 𝑥 

 
From here, y can be considered as a function of x, (y=f(x)): (𝑓(𝑥))2 + 4𝑥2 = 7 − 𝑥 

 
Now we can differentiate each side of the equation: 2(𝑓(𝑥))(𝑓′(𝑥)) + 8𝑥 = −1 

 
From here, we can re-arrange the function so that f’(x) will be on one side of the 
equation: 𝑓′(𝑥) = −8𝑥 − 12(𝑓(𝑥))  

 
Lastly, we can substitute the f(x) back to the original variable of y: 𝑦′ = −8𝑥 − 12𝑦  

 

 



 

Elasticity 
 
The elasticity of a function f(x) is the ratio of the relative change in the function’s 
output with respect to the relative change in its input x or the relationship of change 
(as applied in various economic models such as in the price elasticity of demand, 
etc.). The elasticity of f(x) with respect to x gives approximately the percentage 
change in f(x) when x is increased or decreased. We use derivatives to compute 

elasticity. 
 
The notation of elasticity is as written:  

Elxf(x) 
 
and is calculated with the following formula: 

Elxf(x)= 𝑥𝑓(𝑥) 𝑑𝑓(𝑥)𝑑𝑥  ,  
where f’(x) represents the derivative of f(x). 
 
By using the definition of the derivative of a function (Newton Quotient) we also reach 
this formula:  
 

(x)= 𝑥 𝑓(𝑥) 𝑓(𝑥+ℎ)−𝑓(𝑥)ℎ = 𝑥ℎ 𝑥 𝑓(𝑥+ℎ)−𝑓(𝑥)𝑓(𝑥)  

 
Example: 

Compute the elasticity of x from the given function 𝑓(𝑥) = 𝑥−1𝑥+1 
 
Solution: 

Elxf(x) = 𝑥𝑓(𝑥) 𝑑𝑓(𝑥)𝑑𝑥  

 
We can compute by putting the function into the formula: 
 

Elx(
𝑥−1𝑥+1) = 𝑥(𝑥+1)𝑥−1 ∙ 1(𝑥+1)−1(𝑥−1)(𝑥+1)2 ⇒ 2𝑥𝑥2−1 

 
Elasticity of logarithmic devices 
 
Another way of notation for a given function f(x) is: 
 



 

Elxf(x)=𝑑𝑙𝑛(𝑓(𝑥))𝑑𝑙𝑛(𝑥) , which is equivalent to Elxf(x)=
(𝑙𝑛𝑙𝑛 (𝑓(𝑥)) )′(𝑙𝑛𝑥)′  
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Limits and extrema 
 
The expression: 

limx→a  𝑓(𝑥) = 𝐴  
 
Represents the limit of f(x) when x is sufficiently closer to a, but not equal to a. 

 
One-sided limits 
 
Whenever a real number x approaches a random parameter k (obviously different 
from ±∞), it can be either lower or higher than k. Therefore, we say: 
 
limx→a- 𝑓(𝑥)  is the left limit of f(x), when x approaches a but is smaller than a or in other 
words, the left limit is the value that f when x approaches a from below (x < a) 
 
limx→a+ 𝑓(𝑥)  is the right limit of f(x), when x approaches a but is bigger than a or in other 
words, the right limit is the value that f when x approaches a from above (x > a) 
 
If limx→a- 𝑓(𝑥)  = limx→a+ 𝑓(𝑥) , then the limit of f(x) in a exists and it equals A (limx→a 𝑓(𝑥) = 
A). 
 

Asymptotes 
 
An asymptote is a line for which, as x tends to ± ∞, the distance between the line and 
the function to which the line is an asymptote tends to, but never reaches, 0.  
 
 
 
 



 

The function f(x) = ex has a horizontal asymptote y=0; and f(x) = lnx has a vertical 
asymptote is x=0.  
 

 
 
We can also have non-horizontal and non-vertical asymptotes. 
 

 If f(x) is a function of the form 𝑓(𝑥) =  𝐴(𝑥)𝐵(𝑥)  where A(x) is exactly one degree greater 

(the largest power of x is 1 larger) than B(x), we will have an oblique asymptote of the 
form y = ax +b. We can find this asymptote through polynomial division, because the 
remainder of the fraction will eventually tend to zero as x tends to ± ∞, leaving only the 
linear equation, which is the asymptote. 
 

Horizontal asymptotes 
 
To find the horizontal asymptote, we must compare the degree of the numerator “n” 
to the degree of the denominator “s” 
 𝑓(𝑥) =  𝐴(𝑥)𝐵(𝑥)  
 

If n < s, then: The horizontal asymptote is y = 0 

If n = s, then: Divide the leading coefficients to find 
the horizontal asymptote. 

If n > s, then: There is no horizontal asymptote (there 
is an oblique asymptote) 



 

Continuity and differentiability 
 

Continuity 
A graph is referred to as continuous if the graph of the function is smooth and free of 
holes, jumps (leaps), or asymptotes. 
 
A function f is continuous at a point x=a in its domain if the following three conditions 
are satisfied: 

1.  𝑓(𝑥)  is defined. 
 

2.  
3.  

limx→a 𝑓(𝑥)  exists. 
 

4. limx→a 𝑓(𝑥) = 𝑓(𝑎)  
If a function satisfies these conditions at every point in its domain, then the function is 
said to be continuous on its domain. 

Example: 



 

 
Moreover, since f is composed of elementary functions that are always continuous, 
then f is continuous in all its points. 

Differentiability 
 
“If this limit exists, we say that f is differentiable at x. The process of finding the 
derivative of a function is called differentiation.” (Knut Sydsæter, 2016). Therefore, we 
can conclude that: 

- The function f is differentiable in a if 𝑓(𝑎+ℎ)−𝑓(𝑎)ℎ   exists.  

- The function f is differentiable if 𝑓(𝑎+ℎ)−𝑓(𝑎)ℎ   exists for all a in the domain of f.  

- The differentiability of a function implies its continuity. However, the reverse 
statement is not true. 

 

L’Hopital’s Rule 
 
L’Hopital’s rule is used to calculate the limits of functions that can be rearranged as 
a fraction and that are differentiable in a point k, as well as in all the values close to k.  
 
Consider the functions f(x) and g(x) that are differentiable in and for the values of x 

close to a, however, if 𝑓(𝑎)𝑔(𝑎) is indeterminate, then the limit is undefined. 

 



 

 

Indeterminate Forms Example 00 
limx→0 (𝑠𝑖𝑛 𝑥𝑥  ) ∞∞ 
limx→∞ (𝑠𝑖𝑛 𝑥𝑥  ) 

 

Therefore, to find the limit, we can use L’Hopital’s rule.  
The rule says that if 𝑓′(𝑥)𝑔′(𝑥)  exist,  

limx→a (𝑓(𝑥)𝑔(𝑥)) = limx→a (𝑓′(𝑥)𝑔′(𝑥))  
 
In which the L’Hopital’s rule can be done n times to get the limit of the original 
function.  
 
However, as soon as the result of the derivative is a zero or a number, we must stop 
as the answer is no longer a determinate form and the rule no longer applies.  
 

Stationary points 
A stationary point x of a differentiable function f satisfies the equation f’(x)=0.  
There are three sorts of stationary points: maximum points, minimum points, and 
points of inflection. A stationary point is a point on a curve where the slope is zero. 
 

 
Note:  
Any extreme point that is not an endpoint of the domain must be a stationary point. 
 



 

Minima & maxima 
 

Extrema 
 
Extreme points are defined as values of x for which the function f reaches either its 
maximum or its minimum. 
 

Global maximum and global minimum points 
 
Maximum or minimum values that are reached across the whole function are referred 
to as "Absolute" or "Global" maximum or minimum values. 
 
Unlike the global maximum (and minimum), which are both fixed, the local maximum 
and minimum might be many times larger or smaller. 
 
Global Maximum: If for a point k it holds that f(k)≥f(x) for all the values of x in the 
function f’s domain, then k is a global maximum point and f(k) is a global maximum.  
 
Global Minimum: If for a point k it holds that f(k)≤ f(x) for all the values of x in the 
function f’s domain, then k is a global minimum point and f(k) is a global minimum.   

Local maximum and local minimum points 
 
If for a point a it holds that f (a) is greater (less) than or equal to f (x) for all x in a 
neighbourhood of a, then we call a a local maximum (minimum) point, whereas f (a) 
is called a local maximum (minimum). 
 
Note: 
Every global maximum (minimum) is also a local maximum (minimum).  
 

Extrema on a closed interval 
 
A continuous function with domain [a,b] always has a maximum and minimum. The 
potential extreme points of a closed interval include: 

1. All stationary points on (a, b), i.e., x in (a, b) such that f ′(x) = 0.  
2. The point a 
3. The point b 



 

 

How to find the extreme of a differentiable function on 
a closed bounded interval 
 

1. Find every stationary point on (a,b) and compute the value of f at these points. 
2. Compute f’s value in the endpoints of the interval  
3. The function’s maximum is the largest value found under numbers 1 and 2, and 

the smallest value is the minimum. 
 

Second derivative & inflection points 
 

Inflection points 
 
Inflection points are a point of a curve at which a change in the direction of curvature 
occurs. Consider a function f, with f’’(k)=0, then k is an inflection point of f if f’’(x) 
changes sign at k.  
 
To determine the inflection points of a function, we simply find the second derivative 
of the function (if it exists) and then solve the equation f’’(x)=0. 
 

First derivative test 
 
k can be considered a local extreme point of f(x), such that f’(k)=0 and if f’(x) changes 
sign at x=k. 
 
Furthermore, by applying the afore-mentioned definition of local extreme points, it can 
be determined if k is a maximum local point or a minimum local point. If f’(x) does not 
change its sign at k, then k is not a local extreme point of the function. 
 

Second derivative test 
 
Let f be a twice differentiable function, with a stationary point k, such that f’(k)=0. 
We have the following conditions: 

1. If f’’(k)<0, then k is a local maximum point 
2. If f’’(k)>0, then k is a local minimum point 



 

If f’’(k)=0, then there is nothing that can be said about k. (we have to use the first 
derivative test). 
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Multiple Variables 
 
In a function of two variables, instead of mapping values of one variable to values of 
another variable, we map ordered pairs of variables to the values of another 
variable. 
 

Partial differentiation 
 
Functions of two or more variables (such as z=f(x,y)) have multiple independent, or 
exogenous, variables (in this case x and y), and a dependent, endogenous, variable 
(in this case z). The domain is usually defined as a combination the independent 
variables, i.e. there is often not a unique value that the domain takes. 
 
Partial differentiation is the derivative of f with respect to a specific variable. 
Consider, 𝑓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) is a function with n variables summarized by x, the 
derivative of f with respect to 𝑥𝑛 is called a partial derivative.  
 
This is denoted by: 𝜕𝑦𝜕𝑥 = 𝑓′𝑥𝑖(𝑥) = 𝑓′𝑖(𝑥) 

When computing partial differentiation, the other variable(s) in which we are not 
deriving with respect to remains as a constant(s).  
 

Second-order partial derivatives  
 
The partial derivative of a function of variables is a function of the variables that 
make up the function. We can compute the higher-order derivatives by taking the 
partial derivatives of the partial derivatives and multiplying them together.  
 



 

The second derivative of a function f is calculated with respect to 𝑥𝑖 first and then 
with respect to 𝑥𝑗 , which is denoted as: 𝜕𝑓𝜕𝑥𝑗 ( 𝜕𝑓𝜕𝑥𝑖) = 𝜕2𝑓𝜕𝑥𝑗𝜕𝑥𝑖 = 𝑓′′𝑥𝑖𝑥𝑗(𝑥) = 𝑓′′𝑖𝑗(𝑥) 

 

Young’s Theorem: 
 

 𝑓′′𝑖𝑗(𝑥) = 𝑓′′𝑗𝑖(𝑥)  (for most well behaving functions) 

 
This shows that the order of the derivative of respecting different variables will not 
matter as the result will most likely be the same for all functions found in this course. 
 
Hessian Matrix: 

 

Hessian matrix is the summary of order partial derivatives systematically. 
 𝑓′′(𝑥) = [𝑓′′11(𝑥)𝑓′′12(𝑥) ⋯ 𝑓′′1𝑛(𝑥)  ⋮⋮ ⋱ ⋮  𝑓′′𝑛1(𝑥)𝑓′′𝑛2(𝑥) ⋯ 𝑓′′𝑛𝑛(𝑥) ] 

 
According to Young’s Theorem, this matrix will be symmetrical. 
Note: 

- It is very important to notice and/or realize which variable we are respecting 
to when calculating first or second order partial derivatives and ensuring that 
the other variables remain as constants. 

- Young’s Theorem should be recognized in order to not repeat calculations 
when computing second order partial derivatives that will have the same 
results. 

 

Partial elasticity 
 
Let us consider f(x) a function with n variables. 
The partial elasticity of the function f with respect to a specific variable xi is:  𝐸𝑙𝑥𝑖𝑓(𝑥) = 𝑥𝑖𝑓(𝑥) 𝜕𝑓(𝑥)𝜕𝑥𝑖  

where 𝜕𝑓(𝑥)𝜕𝑥𝑖  is the partial derivative in respect to 𝑥𝑖 
 
Or in terms of natural logarithm:  𝐸𝑙𝑥𝑖𝑓(𝑥) = 𝜕𝑙𝑛 (𝑓(𝑥))𝜕𝑙𝑛 (𝑥𝑖)  



 

When computing the partial elasticity of a function, the previously mentioned rules 
apply. Furthermore, to simplify the calculations for the logarithmic form of the 
elasticity, the notation ln(x)=u is used. This way, we can make the substitution 𝑒𝑢 = 𝑥. 
 
Example: 𝑓(𝑥, 𝑦) = 𝑦𝑥𝑥2𝑦𝑙𝑛(𝑥)

 

 
We can now use the natural logarithm form of the partial elasticity formula, thus, we 
can input the function f(x,y) as: 𝑙𝑛 𝑙𝑛 (𝑦𝑥𝑥2𝑦𝑙𝑛(𝑥))  ⇒𝑙𝑛 𝑙𝑛 (𝑦)  + 𝑥𝑙𝑛(𝑥) + 𝑦𝑙𝑛(𝑥)𝑙𝑛 (2) 

 
We can now let ln(x)=u, substituting x=𝑒𝑢 
 𝐸𝑙𝑥𝑓(𝑥) = 𝜕𝑙(𝑙𝑛 𝑙𝑛 (𝑦)  + 𝑒𝑢𝑢 + 𝑦𝑢𝑙𝑛 (2))𝜕𝑢  𝐸𝑙𝑥𝑓(𝑥) = 𝑒𝑢𝑢 + 𝑒𝑢 + 𝑦𝑙𝑛(2)1  𝐸𝑙𝑥𝑓(𝑥) = 𝑥𝑙𝑛(𝑥) + 𝑥 + 𝑦𝑙𝑛(2) 

 

Chain rule 
 

Simple chain rule 
 
Considering the function 𝑧 = 𝑓(𝑥, 𝑦) with 𝑥 = 𝑓(𝑡) and 𝑦 = 𝑔(𝑡), we have the following 
relationship when computing chain rule for functions with more than one variable: 𝜕𝑧𝜕𝑡 = (𝜕𝐹𝜕𝑥) 𝜕𝑥𝜕𝑡 + (𝜕𝐹𝜕𝑦) 𝜕𝑦𝜕𝑡  

 
If 𝑧 = 𝑓(𝑥, 𝑦) and we consider n functions xi of t, with i=1,2,3,…n (𝑥𝑖 = 𝑓𝑖(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛)). 
We have the following relationship: 
 𝜕𝑧𝜕𝑡𝑖 = ( 𝜕𝐹𝜕𝑥1) 𝜕𝑥1𝜕𝑡𝑖 + ( 𝜕𝐹𝜕𝑥2) 𝜕𝑥2𝜕𝑡𝑖 + ⋯ + ( 𝜕𝐹𝜕𝑥𝑛) 𝜕𝑥𝑛𝜕𝑡𝑖  

 

Alternative notation: 𝜕𝑧𝜕𝑡𝑖 = 𝐹𝑡𝑖(𝑥) 

 

Implicit differentiation 
 



 

A level set or level curve function or in other words, functions f with real value. If F(x,y) 
is a level curve defined by F(x,y)=c, then the differentiation of the function can be 
computed by: 𝑦′ = 𝑑𝑦𝑑𝑥 = − 𝐹′(𝑥)𝐹′(𝑦) 

 
Where 𝑓′(𝑥) is the partial differentiation in respect to x, and 𝑓′(𝑦) is the partial 
differentiation in respect to y. 
 
Example: 
Consider the function 𝐹(𝑥, 𝑦) = 𝑥2𝑦 and 𝑐 = 1, compute the differentiation in respect 
to x. 
 
Solution: 𝑦′ = 𝑑𝑦𝑑𝑥 = − 𝐹′(𝑥)𝐹′(𝑦) 

 
We can now compute the partial differentiation in respect to x and in respect to y, 
and us them inside the formula as shown above: 𝑦′ = − 2𝑥𝑦𝑥2  𝑦′ = − 2𝑦𝑥  

 

Homogeneous functions 
 
Homogenous functions are those that have multiplicative scaling behaviour in 
mathematics, meaning that if all of their arguments are multiplied by a factor, then 
the value of their function is multiplied by some power of the factor that multiplied all 
of their arguments. 
 
If f(x) is a function with n variables, we can say that the function is homogenous of 
degree k if it holds that: 𝑓(𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … 𝑡𝑥𝑛) = 𝑡𝑘𝑓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) 

 
How to determine whether the function is homogeneous or not: 

- We multiply every variable with t 
- Simplify when needed, and see whether or not the function comes back to the 

original function with t. 
 



 

Properties 
 
Let us consider a function F(x) that is homogenous of degree k.  

1. Euler’s theorem 𝑥1 ( 𝜕𝐹𝜕𝑥1) + 𝑥2 ( 𝜕𝐹𝜕𝑥2) + ⋯ + 𝑥𝑛 ( 𝜕𝐹𝜕𝑥𝑛) = 𝑎𝐹(𝑥) 

2. Partial derivative’s degree 

The partial derivative 
𝜕𝐹𝜕𝑥𝑖 of a function is homogeneous, with its degree being k-1. 

 

To determine whether or not a function is homogeneous of degree k either the 
definition or Euler’s theorem can be used. 
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Optimization in two variables 
 

Stationary point 
 
For a function of two variables, such as f(x,y), if the point (ˆx, yˆ) is an interior point (i.e. 
it isn’t on the boundary of the domain), and z=f(x,y) is a differentiable function, then 
the necessary condition for it to be an extreme point is: 

f ’x (ˆx, yˆ) = 0 
f ’y (ˆx, yˆ) = 0 

A stationary point is always an interior point of the domain of the given function, in 
this case f.  
 
There are three types of stationary points, namely: 

1. Maximum Points: when (from positive values) the value of the derivative 
becomes negative after plugging in numbers after the maximum point.    
 

2. Minimum Points: when (from negative values) the value of the derivative 
becomes positive after plugging in numbers after the maximum point.    
 

3. Inflection Points: A graph's inflection point is where the graph's rise or decline 
type shifts. It is only possible for these points to exist if the second derivative is 
zero. The graph can change in the following ways: 

a. from concave up and increasing to concave down and increasing 
b. from concave down and increasing to concave up and increasing 
c. from concave down and decreasing to concave up and decreasing 
d. from concave up and decreasing to concave down and decreasing 

 

 



 

Sufficient conditions with regard to the 
convexity or concavity of a function 
 

Convexity of domain 
 
The domain of a function is convex if for every pair of points within the specified 
region, every point on the straight line segment that connects them is also part of 
the region. 
 

Convexity of function 
 
A function f (x, y) is convex if any straight line segment connecting two points of the 
function’s graph is situated completely on or above the graph. 
 

Conditions for a function to be convex 
 
For any function f(x, y) that is twice differentiable and of which the first and second 
derivative are continuous (f∈ C2) we can say that it is convex for all (x, y) in the 
domain if: 

f ’’
11(x, y)≥ 0 

f ’’
22(x, y)≥ 0       

f ’’11(x, y) f’’22(x, y)- (f’’12 (x, y))2 ≥ 0 
 

Concavity of function 
 
A function f (x, y) is convex if any straight line segment connecting two points of the 
function’s graph is situated completely on or below the graph. 
 

Conditions for a function to be concave 
 
For any function f(x, y) that is twice differentiable and of which the first and second 
derivative are continuous (f∈C2) we can admit that it is concave for all (x, y) in the 
domain if: 

f ’’11(x, y)≤ 0 



 

f ’’22(x, y)≤ 0                            f 
’’11(x, y) f’’22(x, y)- (f’’12 (x, y))2 ≥ 0 

 

Sufficient conditions for minimum 
 
If we consider the function f (x, y), with f∈ C2 and the point (ˆx, yˆ) we say that (ˆx, yˆ) is 
a minimum point if it respects the following conditions: 

− the point (ˆx, yˆ) represents a stationary point of the function f. 
− the domain of f is convex 
− the function f is convex. 

 

Sufficient conditions for maximum 
 
If we consider the function f (x, y), with f∈ C2 and the point (ˆx, yˆ) we say that (ˆx, yˆ) is 
a maximum point if it respects the following conditions: 

− the point (ˆx, yˆ) represents a stationary point of the function f.  
− the domain of f is convex  
− the function f is concave. 

 

Local extrema of functions in two variables 
 
By considering the function f (x, y) and the point (ˆx, yˆ) we can denote that: 

− if f(x, y) ≤ f(ˆx, yˆ), for all the pairs (x, y) in the neighbourhood of (ˆx, yˆ), the point 
(ˆx, yˆ) is a local maximum. 

− if f(x, y) ≥ f(ˆx, yˆ), for all the pairs (x, y) in the neighbourhood of (ˆx, yˆ), the point 
(ˆx, yˆ) is a local minimum. 

Suppose that f is differentiable and the point (ˆx, yˆ) is an interior point of the domain 
of f. If (ˆx, yˆ) is a stationary point, then it is also a local extreme point (local minimum 
or maximum point). 

 
Sufficient conditions local extrema 
 
By considering the function f (x, y) and the point (ˆx, yˆ) as an interior pointof the 
domain of f, we have to consider the following situations: 
 



 

Local maximum point 
 
The point (ˆx, yˆ) is a local maximum point if: 

f ’’11(ˆx, yˆ) < 0 
f ’’22(ˆx, yˆ) < 0 

                      f ’’11(ˆx, yˆ) f’’22(ˆx, yˆ) -(f’’12 (ˆx, yˆ))2 >0 
 

Local minimum point 
 
The point (ˆx, yˆ) is a local minimum point if: 

f ’’11(ˆx, yˆ) > 0 
f ’’22(ˆx, yˆ) > 0 

                    f ’’11(ˆx, yˆ)  f’’22(ˆx, yˆ) - (f’’12 (ˆx, yˆ))2 > 0 
 

Saddle point 
 
The point (ˆx, yˆ) is a saddle point if: 
                  f ’’11(ˆx, yˆ) f’’22(ˆx, yˆ) - (f’’12 (ˆx, yˆ))2 < 0 
 

Inconclusive 
 
The point (ˆx, yˆ) can be either a local maximum, local minimum or a  
saddle point if: 
                    f ’’11(ˆx, yˆ) f’’22(ˆx, yˆ) - (f’’12 (ˆx, yˆ))2 = 0 
 

Optimisation in unbounded closed domain 
and Lagrange 
 
Lagrange multipliers are an approach for determining the local maximum and 
minimum of a function that is subject to equality requirements/constraints (i.e, under 
the constraint that one or more equations must be exactly fulfilled by the values of 
the variables that have been chosen). 
 
If we consider the function f(x, y) and g(x, y) = c a constraint, the Lagrange function 
is defined as: 



 

L(x, y) = f( x, y) − λ(g(x, y) − c)) 
Note that λ is a constant. 
 
The point (x, y) is a considered a stationary point of the function L(x, y) if for some 
value of λ we have: 

Lx( x, y)= f ’x ( x, y)- λg’x (x, y)=0 
Ly( x, y)= f ’y ( x, y)- λg’y (x, y)=0 

                                        with g(x, y)=c 
 
The equations noted above are considered the first-order conditions of Lagrange 

function. 

 
Considering: 
          min f( x, y) 

with g( x, y)= c 
We imply that we want to determine the minimum of f(x, y) with domain defined by 
g(x, y) = c. 
 
The minimum point (ˆx, yˆ) represents a stationary point of the Lagrange function.  
The maximum point (ˆx, yˆ) is also considered a stationary point of the Lagrange 
function. 
 

Sufficient conditions optimisation with a constraint 
 
We consider the following function defined in regard to x and y: 

D = ( f ‘’
xx -  λg ‘’

xx)(g’
y)2 – 2( f ‘’

xy – λg’’
xy)∙ g‘

x ∙ g’y + ( f ’’
yy-  λg’’

yy)(g’x)2 
 

Local minimum point 
 
The point (ˆx, yˆ) is considered a local maximum point for: 

− if (ˆx, yˆ) is a stationary point of the Lagrange function with λ = λˆ. 
− if D(ˆx, yˆ) < 0, where λ is taken equal to λˆ. 

 

Local minimum point 
 
The point (ˆx, yˆ) is considered a local maximum point for: 

− if (ˆx, yˆ) is a stationary point of the Lagrange function with λ = λˆ 



 

− if D(ˆx, yˆ) > 0, where λ is taken equal to λˆ. 
 

Interpretation of λ  
 
In the case of (ˆx, yˆ) being an extreme point of the function f(x, y) in regard to the 
constraint g(x, y) = c, we can observe that the extreme point depends on c (ˆx(c), 
yˆ(c)). Moreover, the extreme value also depends on c, fˆ(c). 
 
The constant λ is expressed as follows: 

λ = 𝑑𝑓^(𝑐)𝑑𝑐  
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