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Applied statistics 2 – IBEB – Lecture
1, week 1

Introduction

The purpose of Statistics is represented by four main activities:
● Asking a question about a population
● Observing data from a sample smaller than the population (gathering

evidence)
● Making a decision rule
● Drawing conclusions regarding the population based on the information

provided by the data from the observed sample
Observation: While analysing the data, you need to keep in mind what the population
is and whether the selected sample is representative for it.

Hypothesis testing

In order to do the testing, you need to respect the following four steps:
1. Question (formulation of the hypotheses)
2. Evidence/data (calculation of the test statistic)
3. Decision rule (Implementation of a decision rule that reflects when you can

reject the formulated hypothesis)
4. Conclusion (accept/reject hypothesis)

One-sample z test

A one-sample z-test is used for a population with unknown mean (μ) and known
standard deviation (σ).

Distribution of sample mean

We can say the sample mean is (approximately) normally distributed with mean μ
and standard deviation σ if n is sufficiently large.



● The distribution of the sample mean X is approximately 𝑁(µ,  σ
𝑛

)

● Standardised sample mean 𝑍 ∼ 𝑁(0, 1) = 𝑋−µ
σ/ 𝑛

If the population distribution is normal, then any n is sufficient.
The more non-normal the population is, the larger n is needed.

Significance testing

A decision rule is a procedure, which we use in order to decide whether we accept or
reject the null hypothesis. For example, when H0 is true, there is still a small
probability of error that results in rejecting H0. The probability for such an error is
called the significance level. It should be small.

The significance level (denoted also as alpha (𝛼)) is the probability of rejecting the
null hypothesis when it is true. For example, a significance level of 0.05 indicates a 5%
risk of concluding that a difference exists when there is no actual difference.

Ways of performing hypothesis testing

testing based on critical value
In correspondence with the significance level we have and , which represent𝑧

α
* − 𝑧

α
*

the critical values on the test distribution that are compared to the test statistic to
determine whether or not the null hypothesis is rejected. H0 is rejected if the test
statistic is in the rejection region on the test distribution.

testing based on P value
P-value: If H0 is true, the probability that the test statistic would be as extreme or
more extreme than the observed value.( "Extreme" means deviating from H0 in favor
of Ha.)
The smaller the P-value, the stronger the evidence against H0. If P-value <
significance level α, then H0 is rejected.
Note: should not be used. resulting in criticalα = 0 α = 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻

0
 𝑤ℎ𝑒𝑛 𝐻

0
𝑖𝑠 𝑡𝑟𝑢𝑒)

values , hence H0 will never be rejected (even if it is wrong).𝑧 α
2

*= ∞



Two types of error
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The probability of getting a Type I error is given by significance level and is rejecting
null hypothesis that is actually true.
On the other hand, Type II error is failing to reject null hypothesis that is actually false.

One-sided vs two-sided z test

Two-sided z test example:  Test H0 : against Ha :µ = 𝑥 µ ≠ 𝑥
One-sided z test: Test H0 : against Ha :µ = 𝑥 µ > 𝑥

OR Test H0 : against Ha :µ = 𝑥 µ < 𝑥

Confidence interval

The sample mean can be used to construct a confidence interval for the unknown𝑋
mean μ.  A confidence interval represents a range of plausible values for the
population parameter.

Confidence interval of for the mean 𝜇 is:100(1 − α)%
𝐶 = 𝑥 ± 𝑧

α/2
* σ

𝑛

where n-sample size, 𝜎- standard deviation, C- area between critical values -z*  and
z* under the standard Normal curve.

One-sample t-test

A one-sample t test is used for a population with unknown mean μ as well as
standard deviation 𝜎.



For sufficiently large n, sample mean . 𝜎 can be approximated by sample𝑋 ∼ 𝑁(µ,  σ
𝑛

)

standard error denoted s.
Then, ,𝑡 = 𝑥−µ

𝑠/ 𝑛

following t distribution with (n-1) degrees of freedom.

One-sample test for the mean summarised
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Matched pairs t test

Matched pairs t test refers to the situation when there are two measurements for
each individual in the population. The respective measurements correspond to a
random sample described by the and respectively.µ

1
µ

2

Use difference creating a one-sample t test of the difference.𝑑 = 𝑥
1

− 𝑥
2

We want to test whether , by using difference we can formulate hypothesis asµ
1

= µ
2

follows:
H0: against Ha: (becomes one-sample t-test of the difference)µ

1
− µ

2
= 0 µ

1
− µ

2
> 0

Note: t test in SPSS always gives the P value for two-sided test (needs to be divided
by two for one-sided test)



T-test under non-normality

● t test requires sample data to follow normal distribution
● Mean and standard deviation are sensitive to outliers, hence so is the t

statistic

t test can still be used if there are no outliers and…
● n sufficiently large (e.g., n > 100)
● n moderate (e.g., 20 ≤ n ≤ 100) and little skewness
● n small (e.g., n < 20) and data approximately normally distributed

Applied statistics 2 – IBEB – Lecture
2, week 2

Sign test

Sign test is a test for matched pairs, when there are two measurements for each
individual in the population.
Unlike matched pairs t test, the sign test evaluates the medians instead of the
means. Additionally, the sign test is more robust (i.e. “capable of performing without
failure under a wide range of conditions”) to skewness of the distribution and outliers.

When performing a sign test we want to compare the number of positive differences
and negative differences. A tie is a pair of measurements with difference 0, which is
neither positive nor negative, these types of measurements are removed from the
sample. Let p denote proportion of positive differences.

1. The formulated hypothesis are as follows:
H0: p=0.5 against Ha: p>0.5

2. Test statistic x= the number of positive differences
(under the null hypothesis)𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝 = 0. 5)

3. P-value: 𝑃(𝑋 ≥ 𝑥) = 𝑃(𝑋 = 𝑥) +... + 𝑃(𝑋 = 𝑛)
4. Reject H0 if 𝑝 𝑣𝑎𝑙𝑢𝑒 < 𝛼



Sign test with normal approximation

Binomial distribution can be approximated by normal distribution ,𝑁(𝑛𝑝,  𝑛𝑝(1 − 𝑝))
where 𝜇=np and 𝜎= if:𝑛𝑝(1 − 𝑝)

● np 10≥
● n(1-p) 10≥

continuity correction
When using normal approximation, continuity correction is required as binomial is an
integer-valued distribution whereas normal is a continuous distribution.
Example: 𝑃(𝑋 ≥ 25)𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑃(𝑋 > 24. 5)𝑁𝑜𝑟𝑚𝑎𝑙

Sign test vs. t-test

Matched pairs t test is applicable if:
● No outliers
● Sample mean approximately normal

When both matched pairs t test and sign test can be applied, sign test is less
powerful. For the same P(Type I error), sign test will have a higher P(Type II error).

Wilcoxon signed rank test

Wilcoxon signed rank test is a nonparametric test for matched pairs. Compared to
the sign test it is also robust to outliers, but not skewness, however it is more powerful
than sign test. For the same P(Type I error), sign test will have a higher P(Type II error)
than a Wilcoxon test.

When performing Wilcoxon signed rank test we use the sum of positive/negative
ranks.

1. Test statistic : the sum of (+) ranks𝑊+

Total rank sum = n(n+1)/2
Expected positive (negative) rank sum = n(n+1)/4
Under H0: 𝑊+ ∼ 𝑁(µ

𝑊+
, σ

𝑊+
)

;µ
𝑊+

= 𝑛(𝑛+1)
4 σ

𝑊+
= 𝑛(𝑛 + 1)(2𝑛 + 1)/24



2. P-value: , x-test statistic𝑃(𝑊+ ≥ 𝑥) =  𝑃(𝑍 ≥
𝑥−µ

𝑊+

σ
𝑊+

)

3. Reject H0 if 𝑝 𝑣𝑎𝑙𝑢𝑒 < α

two types of ties:
1. Observations with difference 0, which are removed from the sample; v
2. Several observations with the same absolute difference for which we need to

assign the average rank (0.5 rank) (e.g., if we had two similar observations
then we take the average of the two ranks).

Overview of matched pairs tests

Most powerful to Least powerful:
1. Matched pairs t test: no outliers + approximately normal distribution
2. Wilcoxon signed rank test: symmetrical distribution, BUT allows for outliers
3. Sign test: allows for outliers and skewness of distribution
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Two-sample t test

matched pairs t test vs. two-sample t test
For both tests 𝐻

0
:  µ

1
= µ

2

Matched pairs t test: two measurements for each individual
Two-sample t test: two independent samples

● Individuals do not have to be paired
● Group sizes do not have to be the same

Two types of two-sample t tests

Perform a statistical test on H0: σ1 = σ2 vs. Ha: σ1 ≠ σ2



o F test
o Levene’s test
If the variances are equal, two-sample t test with equal variance is preferred.

1. Two-sample t test with equal variance assumed. Assume that σ1 = σ2
2. Two-sample t test with equal variance not assumed. Do not assume that σ1 =

σ2

F-test on equality of variances
To determine which t test we should proceed with, we perform a test for equality of
variances. Below is the procedure for an F-test:
Sample n1 observations from Population 1 with a normal distribution .𝑁(µ

1
,  σ

1
2)

Sample n2 observations from Population 2 with a normal distribution 𝑁(µ
2
,  σ

2
2)

1. Formulate hypothesis: H0: against Ha: .σ
1
2 = σ

2
2 σ

1
2 ≠ σ

2
2

2. Calculate sample variances: , .𝑠
1
2 𝑠

2
2

3. Reject H0 when or or𝑠
1
2 >> 𝑠

2
2 𝑠

1
2 << 𝑠

2
2 ⇒  𝑠

1
2/𝑠

2
2 >> 1 𝑠

1
2/𝑠

2
2 << 1

Under H0, follows an F distribution with degrees of freedom .𝐹 = 𝑠
1
2/𝑠

2
2 (𝑛

1
− 1,  𝑛

2
− 1)
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Rejection region: 𝑠
𝐿
2/𝑠

𝑠
2 > 𝐹

α/2
* (𝑛

𝐿
− 1, 𝑛

𝑠
− 1)

( denotes the larger value of and , the smaller one.)𝑠
𝐿

𝑠
1

𝑠
2

𝑠
𝑠

Levene’s test
Levene’s test is:



● used by SPSS instead of F test
● compares two or more variances
● not equivalent to the F test when two variances are compared

Two-sample t-test for means

Equal Variances σ
1
2 = σ

2
2

Test statistic: ,𝑡 =  
(𝑥

1
−𝑥

2
)−(µ

1
−µ

2
)

𝑠
𝑝

1
𝑛

1
+ 1

𝑛
2

where ( is pooled standard deviation)𝑠
𝑝

=
(𝑛

1
−1)𝑠

1
2 + (𝑛

2
−1)𝑠

2
2

𝑛
1
+𝑛

2
−2 𝑠

𝑝

Degrees of freedom: (t distribution)𝑛
1

+ 𝑛
2

− 2

Unequal variances σ
1
2 ≠ σ

2
2

Test statistic: 𝑡 =  
(𝑥

1
−𝑥

2
)−(µ

1
−µ

2
)

𝑠
1
2

𝑛
1

+
𝑠

2
2

𝑛
2

Degrees of freedom: k either approximate by a software or (t𝑘 = 𝑚𝑖𝑛(𝑛
1

− 1,  𝑛
2

− 1)

distribution)

Wilcoxon rank sum test

Parametric tests as F test and t test require (approximately) normal distributions of
both samples. A non-parametric alternative is the Wilcoxon Rank sum test (robust
to outliers). The test is performed as follows:

1. Formulate hypothesis:
H0: no difference in [measurement] between groups
Ha: systematically higher/lower [measurement] in one group

2. Rank results lowest to highest irrespective of group, in the event of a tie, assign
the average rank

3. Test statistic W: Sum ranks per group to find the rank sum of one group W
Under H0, W can be approximated by Normal distribution with mean
and standard deviation:

,µ
𝑊

=  𝑛
1
(𝑁 + 1)/2 σ

𝑊
= 𝑛

1
𝑛

2
(𝑁 + 1)/12

4. Find p-value or critical region.
5. Reject H0 if 𝑝 𝑣𝑎𝑙𝑢𝑒 <  α



One-way ANOVA (analysis of variances)

A one-way ANOVA is a more general test that allows us to compare the means from
two or more groups. Test based on the ratio of

● between-group variation: differences between the group averages
● within-group variation: overall population variance

Assumptions:
1. Independent random samples from groups
2. Data is normally distributed in each group
3. Within-group variances are equal for all groups

Variation between groups is:
● small if the sample means are close
● large if the sample means differ much

Notation:
observation j in group i𝑥

𝑖𝑗

sample mean in group i𝑥
𝑖

overall sample mean𝑥
number of observations in group i𝑛

𝑖

total number of observations𝑁

Measure of variation:

Total: 𝑆𝑆𝑇 =
𝑖=1

𝐼

∑
𝑗=1

𝑛
𝑖

∑ (𝑥
𝑖𝑗

− 𝑥)
2

Between group: 𝑆𝑆𝐵 =
𝑖=1

𝐼

∑
𝑗=1

𝑛
𝑖

∑ (𝑥
𝑖

− 𝑥)
2

Within group: 𝑆𝑆𝑊 =
𝑖=1

𝐼

∑
𝑗=1

𝑛
𝑖

∑ (𝑥
𝑖𝑗

− 𝑥
𝑖
)

2

SST =SSB+SSW

To perform the test:
1. Formulate hypothesis:

H0: µ
1

= µ
2

= µ
3

=... = µ
𝑖



Ha: not all of the are equalµ

2. Test statistic: 𝐹 = 𝑀𝑆𝐵
𝑀𝑆𝑊 = 𝑆𝑆𝐵/(𝐼−1)

𝑆𝑆𝑊/(𝑁−𝐼)

Under H0, F follows F-distribution with and degrees of𝐼 − 1 𝑁 − 𝐼
freedom

3. Reject H0 if F is too large (test statistic > critical value)

Limitations to one-way ANOVA:
● Outliers
● Skewed distributions (for small samples)
● Unequal variances within the groups

○ Rule of thumb for standard deviations: 𝑠
𝑙𝑎𝑟𝑔𝑒𝑠𝑡

< 2𝑠
𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡

○ More precision => Levene’s test

Kruskal-Wallis test

A Kruskal-Wallis test is a non-parametric, rank-based alternative to the one-way
ANOVA test.

The test is performed as follows:
1. Hypothesis:

H0: [measurement] has the same distribution in all groups
Ha: distributions of [measurement] are different for some groups

2. Rank lowest to highest (assign average rank for ties).
3. Rank sum for each group.𝑅

𝑖

4. Average rank sum for each group.
𝑅

𝑖

𝑛
𝑖

Overall average rank sum = (N+1)/2, should be close to each Ri/ni under
H0.

5. Test statistic: 𝐻 = 12
𝑁(𝑁+1)

𝑖=1

𝐼

∑
𝑗=1

𝑛
𝑖

∑ (
𝑅

𝑖

𝑛
𝑖

− 𝑁+1
2 )

2

= 12
𝑁(𝑁+1)

𝑖=1

𝐼

∑
𝑅

𝑖
2

𝑛
𝑖

− 3(𝑁 + 1) 

Under H0, H approximately follows a -distribution (Chi-squared𝜒2

distribution) with I-1 degrees of freedom.
Reject H0 if test statistic > critical value (if H is too large).
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One-way ANOVA continued

one-way ANOVA vs two-sample t test
With equal variance and only two groups, one-way ANOVA and two-sample t test
are equivalent: 𝐹 = 𝑡2

One-way ANOVA

Assumptions:
1. Independent random samples from groups
2. Data is normally distributed in each group
3. Within-group variances are equal for all groups →  𝑥

𝑖𝑘
∼ 𝑁(µ

𝑖
, σ)

Observations can be modelled as:
,𝑥

𝑖𝑘
= µ

𝑖
+ ϵ

𝑖𝑘
(𝑥

𝑖𝑘
− µ

𝑖
) ∼ 𝑁(0,  σ)

where: observation k in group i𝑥
𝑖𝑘

mean in group iµ
𝑖

error term of observation k in group i, ( independent draws from N(0, σ))ϵ
𝑖𝑘

:𝐻
0

µ
1

=... = µ
𝑖

, where𝑥
𝑖𝑘

= µ
𝑖

+ ϵ
𝑖𝑘

µ
𝑖

= µ + τ
𝑖

overall meanµ
group effect (centres around 0)τ

𝑖

then, 𝑥
𝑖𝑘

= µ + τ
𝑖

+ ϵ
𝑖𝑘

⇒  𝐻
0
: τ

1
=... = τ

𝑖
= 0 

Between-group variation (MSB): how much does vary around 0τ
𝑖

Within-group variation (MSW): how much does vary around 0ϵ
𝑖𝑘



Two-way ANOVA

One-way ANOVA tests if a categorical variable (or factor) influences the mean of the
continuous response variable. Two-way ANOVA tests whether there is an influence
of two categorical variables on the means of the continuous response variable.

Two-way ANOVA considers:
• Response variable: dependent variable, we test if response variable is affected by
factors (2 factors for two-way ANOVA)

Testing three effects and three sets of hypothesis:
1. Test for the main effect of Factor A:

H0: Factor A has no effect on the mean
Ha: Factor A has an effect on the mean

2. Test for the main effect of Factor B:
H0: Factor B has no effect on the mean
Ha: Factor B has an effect on the mean

3. Test for the interaction effect:
H0: There is no interaction effect on the mean
Ha: There is an interaction effect on the mean

Profile Plot
● No effect if the lines are overlapping and horizontal
● Effect of Factor A (x-axis) if lines are non-horizontal
● Effect of Factor B (y-axis) if lines are not overlapping
● Interaction effect if lines are not parallel (vice versa)

Two-way ANOVA model

𝑥
𝑖𝑗𝑘

= µ
𝑖𝑗

+ ϵ
𝑖𝑗𝑘

µ
𝑖𝑗

= µ + α
𝑖

+ β
𝑗

+ γ
𝑖𝑗

Where:
observation k in group (i, j)𝑥

𝑖𝑗𝑘

μ overall mean
effect of level i of factor Aα

𝑖



effect of level i of factor Bβ
𝑗

interaction effect of level i of factor A and level j of factor Bγ
𝑖𝑗

(The above 3 terms measure deviations from the overall mean that can be
attributed to factor A/B/interaction)

error termϵ
𝑖𝑗𝑘

𝑥
𝑖𝑗𝑘

= µ + α
𝑖

+ β
𝑗

+ γ
𝑖𝑗

+ ϵ
𝑖𝑗𝑘

SST: Total sum of squares
SSA: Sum of squares for main effect of factor A
SSB: Sum of squares for main effect of factor B
SSAB: Sum of squares for interaction effect
SSW: Within-group sum of squares (error sum of squares)

If the group sample sizes are equal, the variation can be decomposed into:𝑛
𝑖𝑗

SST = SSA + SSB + SSAB + SSW

Two-way ANOVA model and test distribution
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Under H0: follows F distribution with degrees of freedom of SSA/SSB/SSAB in𝐹
𝐴

/𝐹
𝐵

/𝐹
𝐴𝐵

the numerator and degrees of freedom of SSW in the denominator

P-value and rejection region:
Effect is significant if corresponding variation is too large compared to within-group
variation.
Critical value is given by with corresponding degrees of freedom𝐹

α
*

P-value: P(F > observed)
Reject H0 (no effect) if F statistic is too large:

Test statistic > critical value



P-value < significance level

test on independence𝝌2

One-way ANOVA: tests whether a continuous response variable is independent of a
categorical variable

test on independence: tests whether a categorical response variable is𝜒2

independent  of a categorical variable

Example (Lecture 4, dr. C. Cavicchia): “Colour of packaging & product rating
Two categorical variables:

1. packaging colours (blue, pink)
2. rating options (poor, normal, good, excellent)

Free samples are given to customers and collects product ratings
500 customers receive blue
1000 customers receive pink

Question: does product rating depend on the colour of the packaging? Or more
generally, is there a relationship between two categorical variables? ”

Two-way tables

Hypothesis:
H0: no relationship between [one categorical variable] and [another
categorical variable] (independence)
Ha: a relationship between [one categorical variable] and [another
categorical variable]
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expected counts
Under H0, expected counts keeps the proportions among { } and { }𝐸

𝑖𝑗
𝑅

𝑖
𝐶

𝑗

: row total; : column total𝑅
𝑖

𝐶
𝑗

𝐸
𝑖𝑗

=  
𝑅

𝑖
 * 𝐶

𝑗

𝑛

Slide 47, Lecture 4, dr. Carlo Cavicchia (2022)

test on independence𝝌2

Test statistic: ,𝜒2 =
𝑖=1

𝑟

∑
𝑗=1

𝑐

∑
(𝑂

𝑖𝑗
−𝐸

𝑖𝑗
)2

𝐸
𝑖𝑗

where r is number of rows and c is the number of columns
Degrees of freedom: test distribution can be approximated by a -distribution with𝜒2

(r-1)*(c-1) degrees of freedom
(the approximation is reasonable if all (not ))𝐸

𝑖𝑗
≥ 5 𝑂

𝑖𝑗

Reject H0 if is large𝜒2



Critical value: Reject H0 if 𝜒2 > (𝜒2)
α

*
(𝑟 − 1) * (𝑐 − 1)( )

P-value: P(test stat > observed)

goodness-of-fit test𝝌2

goodness-of-fit test is to test whether the data fit a certain distribution.𝜒2

Data: The observed count for each category𝑂
𝑖

To perform the test:
1. Hypothesis:

H0: data fit a multinomial distribution with parameters…( )𝑝
1

=...,  𝑝
2

=...

Ha: data do not fit this distribution
2. Calculate the expected count for each category, under H0. The expected𝐸

𝑖

counts are where n is the total number of observations.𝐸
𝑖

= 𝑛𝑝
𝑖

3. Test statistic:

𝜒2 =
𝑖=1

𝑘

∑
(𝑂

𝑖
−𝐸

𝑖
)2

𝐸
𝑖

where k is the number of categories
4. Degrees of freedom: test distribution can be approximated by - distribution𝜒2

with (k-1) degrees of freedom.
(Approximation is reasonable if all (otherwise combine adjacent𝐸

𝑖
≥ 5

categories))
5. Reject H0:

Critical value: 𝜒2 > (𝜒
2
)

α

*

(𝑘 − 1)

continuous distributions
For continuous distributions, construct intervals and compute expected and
observed counts.
If we have to estimate parameters (e.g. for Normal distribution estimate 𝜇 by and 𝜎𝑥
by 𝑠 ), we must adjust the degrees of freedom of the -distribution: degrees of𝜒2

freedom = (k – 1 – # estimated parameters).



Applied statistics 2 – IBEB – Lecture
5, week 4

Linear regression

Simple linear regression model

Linear relationship between a response variable and an explanatory variable(s).
Mean of the response variable depends on the value of the explanatory variable

Notations:
𝑦 = β

0
+ β

1
𝑥 + ϵ

y response variable
x explanatory variable, predictors variable

, regression coefficientsβ
0

β
1

error termϵ
Response = Model + Error

● Model: the part of y explained by x
● Error: the part of y that is not explained by x
● ϵ ∼ 𝑁(0, σ)
● Interpretation: one unit increase in x is associated with a change of in y onβ

1

average
● Prediction: the model can be used to make predictions about y by substituting

x into the model

Estimating the line

ordinary least squares (OLS)
Assume the model is known as:

(data=model+error)𝑦 = β
0

+ β
1
𝑥 + ϵ

To estimate the line:
1. estimated byβ

0
,  β

1
𝑏

0
,  𝑏

1



2. fitted value 𝑦
𝑖

= 𝑏
0

+ 𝑏
1
𝑥

𝑖

3. residual 𝑒
𝑖

= 𝑦
𝑖

− 𝑦
𝑖

(data=fit+residual)𝑦
𝑖

= 𝑦
𝑖

+ 𝑒
𝑖

The regression line of best fit is such that:
● are the closest to𝑦

𝑖
𝑦

𝑖

● are the closest to 0𝑒
𝑖

The way to achieve that is to find that minimises the residual sum of squares:𝑏
0
,  𝑏

1

𝑆𝑆𝐸 =
𝑖=1

𝑛

∑ 𝑒
𝑖
2 =

𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

=
𝑖=1

𝑛

∑ 𝑦
𝑖

− (𝑏
0

+ 𝑏
1
𝑥

1
)( )2

Note:
● Since presence of outliers can influence the fitted resultϵ ∼ 𝑁(0, σ)
● It is sometimes not advisable to extrapolate too much outside of the range of

observed data
● Regression results do not indicate the causality only correlation

Linear regression model

Linear relationship between a response variable and one or more explanatory
variables:

● Simple regression (only one explanatory variable): p=1
𝑦

𝑖
= β

0
+ β

1
𝑥

𝑖
+ ϵ

𝑖

● Multiple regression (multiple explanatory variables): p>1
𝑦

𝑖
= β

0
+ β

1
𝑥

𝑖1
+... + β

𝑝
𝑥

𝑖𝑝
+ ϵ

𝑖

Notation:
y response variable

explanatory variables, predictors variables𝑥
𝑖1

... 𝑥
𝑖𝑝

regression coefficientsβ
1
... β

𝑝

error termϵ
𝑖

In practice, and error terms are unknown and estimated from the data.β
0
,... , β

𝑝
ϵ

𝑖

can be estimated byβ
0
,..., β

𝑝
𝑏

0
,..., 𝑏

𝑝



Fitted values: 𝑦
𝑖

= 𝑏
0

+ 𝑏
1
𝑥

𝑖1
+... + 𝑏

𝑝
𝑥

𝑖𝑝

Residuals: 𝑒
𝑖

= 𝑦
𝑖

− 𝑦
𝑖

= 𝑦
𝑖

− (𝑏
0

+ 𝑏
1
𝑥

𝑖1
+... + 𝑏

𝑝
𝑥

𝑖𝑝
)

ordinary least squares (OLS)
To minimise the residual sum of squares:

𝑆𝑆𝐸 =
𝑖=1

𝑛

∑ 𝑒
𝑖
2 =

𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

=
𝑖=1

𝑛

∑ 𝑦
𝑖

− (𝑏
0

+ 𝑏
1
𝑥

𝑖1
+... + 𝑏

𝑝
𝑥

𝑖𝑝
)( )2

Significance of coefficients

assumption:
● and are independentϵ

𝑖
∼ 𝑁(0, σ)

● Constant variance for all error terms (homoskedasticity)σ2 ϵ
𝑖

Then, coefficient estimators follow normal distribution𝑏
𝑗

𝑏
𝑗

∼ 𝑁(β
𝑗
, σ

𝑏
𝑗

)

t test: H0: =0 against Ha:β
𝑗

β
𝑗

≠ 0

standard errors
ϵ

𝑖
∼ 𝑁(0, σ)

σ is estimated by the regression standard error s, where:

𝑠 = 1
𝑛−𝑝−1

𝑖=1

𝑛

∑ 𝑒
𝑖
2

In simple linear regression:

Standard error of intercept :𝑏
0

𝑆𝐸
𝑏0

= 𝑠 1
𝑛 + 𝑥

2

𝑖=1

𝑛

∑ (𝑥
𝑖
−𝑥)

2

Standard error of slope :𝑏
1

𝑆𝐸
𝑏1

= 𝑠 1

𝑖=1

𝑛

∑ (𝑥
𝑖
−𝑥)

2

significance of coefficients
Hypothesis:

H0: β
𝑗

= 0

Ha: β
𝑗

≠ 0



Observe where𝑏
𝑗

𝑏
𝑗

∼ 𝑁(β
𝑗
, σ

𝑏
𝑗

)

Test statistic:

𝑡
𝑏

𝑗

=
𝑏

𝑗
−0

𝑆𝐸
𝑏𝑗

Degrees of freedom:
Under H0, test distribution follows t distribution with n-p-1 degrees of freedom

Reject H0 if is too large:𝑡
𝑏

𝑗

|
|
|

|
|
|

Critical value: 𝑡
α/2
* (𝑛 − 𝑝 − 1)

P-value: 𝑃( 𝑇| | ≥ 𝑡
𝑏

𝑗

|
|
|

|
|
|
)

confidence interval
Confidence interval for β

𝑗
: 𝑏

𝑗
± 𝑡

α/2
* (𝑛 − 𝑝 − 1)𝑆𝐸

𝑏
𝑗

 

interpretation
Each coefficient describes a partial effect: the effect of a change in the respective
variable given that all other variables remain constant

Interpretation of constant term: Constant term can only be interpreted if value 0 isβ
0

realistic for all explanatory variables 𝑥
𝑖

Note: Too much correlation in explanatory variables is not desirable

Correctness of the model

Assumptions:
1. Linear relationship

Residual plot: against𝑒
𝑖

𝑦
𝑖

Residuals are randomly scattered around 0 with no pattern
2. Errors are independent

Fulfilled in case of random sample
3. Errors are normally distributed

Check histogram of residuals
4. Constant variance

Residual plot: against𝑒
𝑖

𝑦
𝑖

Residuals are equally scattered (no funnel shape)



Residual plots

residuals
It is useful to check whether the linear regression model is valid by looking at:

● Residual plot
● Histogram of residuals

Residuals are fitted such that:
𝑖=1

𝑛

∑ 𝑒
𝑖

= 0

𝜒2 goodness-of-fit test for normality for general data:
degree of  freedom = n – 1 - #parameters
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Usefulness of the model

We need a model to
● explain the patterns/variations in y using 𝑥

1
... 𝑥

𝑝

● predict values in y using 𝑥
1
... 𝑥

𝑝



A model is useful if model explains much variation in y
Different give different𝑥

𝑖1
... 𝑥

𝑖𝑝
𝑦

𝑖

A model is not so useful if it does not explain the variation in y
Different give similar𝑥

𝑖1
... 𝑥

𝑖𝑝
𝑦

𝑖

The variation is shown in 𝑒
𝑖

The measure of the usefulness of the model

The variation can be measured in terms of sums of squares:

Regression: (variation explained by model)𝑆𝑆𝑅 =
𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

Residual: (unexplained variation)𝑆𝑆𝐸 =
𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

Total: 𝑆𝑆𝑇 =
𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

SST=SSR+SSE

and sums of squares𝑅2

is a squared correlation of observed values y and fitted values𝑅2 𝑦

𝑅2 = 𝑆𝑆𝑅
𝑆𝑆𝑇 = 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇

Note:Adding more variables to the model increases (and vice versa) 𝑅2

ANOVA for regression

Use ANOVA to compare explained variation with unexplained variation
Hypothesis:

H0: β
1

=... = β
𝑝

= 0

Ha: at least one β
𝑗

≠ 0

Test statistic:
𝐹 = 𝑀𝑆𝑅

𝑀𝑆𝐸 = 𝑆𝑆𝑅/𝑝
𝑆𝑆𝐸/(𝑛−𝑝−1)

Degrees of freedom:
Under H0, test distribution follows F distribution with p and n-p-1 degrees of freedom
Reject H0 if p-value < significance level



Using the model for prediction

two prediction problems
● What is the prediction of a new (unknown) response? (predict y)
● What is the prediction of the average of responses? (predict )µ

𝑦

The best point predictions for y and are the same, but there’s uncertainty aboutµ
𝑦

the point predictions, and the confidence intervals for y and are different.µ
𝑦

Point prediction for :µ
𝑦

µ
𝑦

= 𝑏
0

+ 𝑏
1
𝑥

1
+... + 𝑏

𝑝
𝑥

𝑝

Confidence interval :µ
𝑦

µ
𝑦

± 𝑡
α/2
* (𝑛 − 𝑝 − 1)𝑆𝐸

µ
𝑦

Point prediction for :𝑦 𝑦 = 𝑏
0

+ 𝑏
1
𝑥

1
+... + 𝑏

𝑝
𝑥

𝑝

Confidence interval :𝑦 𝑦 ± 𝑡
α/2
* (𝑛 − 𝑝 − 1)𝑆𝐸

𝑦

Although = , confidence interval for y is wider than confidence interval for as𝑦 µ
𝑦

µ
𝑦

𝑆𝐸
𝑦

> 𝑆𝐸
µ

𝑦
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Note that for multiple regressions, the formulas are more complicated

approximate intervals

With a large number of observations n:
is close to 0𝑆𝐸

µ
𝑦

can be approximated by s (regression standard error)𝑆𝐸
𝑦



Applied statistics 2 – IBEB – lecture
6, week 5

logarithms

Distribution of economic variables is often right-skewed
(e.g. income, sales, prices, returns, etc)

The use of logarithm may yield more symmetric distributions, however the
interpretation of the models is different when logarithms are used.

Slide 9 and 11, Lecture 6, dr. Carlo Cavicchia (2022)

interpretation of original variables

Regression model: 𝑦 = β
0

+ β
1
𝑥 + ϵ

● Mathematically, change is measured by differentiation: 𝑑𝑦
𝑑𝑥 = β

1

1 unit change in x means units change in yβ
1

● Coefficient indicates the absolute change in y for an absolute change in xβ
1

logarithm of response variable

Regression model: 𝑧 = 𝑙𝑛(𝑦) = β
0

+ β
1
𝑥 + ϵ

Mathematically: β
1

= 𝑑𝑧
𝑑𝑥 = 𝑑𝑧

𝑑𝑦
𝑑𝑦
𝑑𝑥 = 1

𝑦
𝑑𝑦
𝑑𝑥 = 𝑑𝑦/𝑦

𝑑𝑥  

1 unit change in x means (100 * )% change in yβ
1



Coefficient indicates the relative change in y for an absolute change in xβ
1

Point prediction:
For the logarithm of response log (y): 𝑙𝑜𝑔(𝑦) = µ

𝑙𝑜𝑔(𝑦)
= 𝑏

0
+ 𝑏

1
𝑥

1
+... + 𝑏

𝑝
𝑥

𝑝

For the response y: , s = regression standard error𝑦 = µ
𝑦

= 𝑒
µ

𝑙𝑜𝑔(𝑦)
+𝑠2/2

logarithm of explanatory variable

Regression model: 𝑦 = β
0

+ β
1
𝑙𝑛(𝑥) + ϵ

Mathematically: β
1

= 𝑑𝑦
𝑑 𝑙𝑛(𝑥) = 𝑑𝑦

𝑑𝑥/𝑥

1% increase in x means /100 units change in yβ
1

Coefficient indicates the absolute change in y for a relative change in xβ
1

logarithm of response and explanatory variable

Regression model: 𝑙𝑛(𝑦) = β
0

+ β
1
𝑙𝑛(𝑥) + ϵ

Mathematically: β
1

= 𝑑 𝑙𝑛(𝑦)
𝑑 𝑙𝑛(𝑥) = 𝑑𝑦/𝑦

𝑑𝑥/𝑥

1% increase in x means % change in yβ
1

Coefficient indicates the relative change in y for a relative change in x (elasticityβ
1

of y with respect to x)

squared effects

linear and squared effects

Sometimes data does not follow the linear relationship e.g. average income tends to
increase with age at persons’ early stage of career, but then decreases with age in
later stages of career

● parabolic relationship can be used to model effect rather than a linear
relationship

● we do that by add squared age as explanatory variable to the model as
follows:

The model: 𝑙𝑛(𝑖𝑛𝑐𝑜𝑚𝑒) = β
0

+ β
1

*  𝑎𝑔𝑒 + β
2

* 𝑎𝑔𝑒2 + 𝑒𝑟𝑟𝑜𝑟



Test the significance of effect of age on logarithm of income:
t tests assess the significance of the two variables individually
ANOVA test for joint significance of effect of age on logarithm of income (joint
significance of linear and squared effects)

dummy variables

Dummy variable- is a variable that can take on only the value of either 1 or 0 and
represents the presence/absence of some categorical effect

For example, by adding a dummy variable for gender (value 1 for women and
value  0 for men) we can see if gender has an effect on income

Regression coefficient indicates change in logarithm of income for women
compared to men

The model: 𝑙𝑛(𝑖𝑛𝑐𝑜𝑚𝑒) = β
0

+ β
1

*  𝑎𝑔𝑒 + β
2

* 𝑎𝑔𝑒2 + β
3

* 1
𝑓𝑒𝑚𝑎𝑙𝑒

+ 𝑒𝑟𝑟𝑜𝑟

takes on value 1 for females and 0 for males1
𝑓𝑒𝑚𝑎𝑙𝑒

<0 means for a given age, income is on average *100 % lower for females thanβ
3

β
3

males
Note: If changing the reference category, constant coefficient will also changeβ

0

categorical variables

If we want to incorporate categorical variable (with more than 2 outcomes) into the
model we can consider a dummy variable for each outcome.

Example: To see if economics status has an effect on income we use a categorical
variable with three outcomes:

● Working full time
● Working part time
● Retired or gave up business

One of the dummy variables is unnecessary as if the values in two dummy variables
are known, the value in the third dummy variable is known as well.

For categorical variable with k outcomes, k − 1 dummy variables are added to the
model

Reference category is the left out category



Regression coefficients indicate change in the response variable with respect
to the reference category
Example: in this case of economic status effect on income, full-time work
seems reasonable reference category as it is the majority

Model:
𝑙𝑛(𝑖𝑛𝑐𝑜𝑚𝑒) = β

0
+ β

1
*  𝑎𝑔𝑒 + β

2
* 𝑎𝑔𝑒2 + β

3
* 1

𝑓𝑒𝑚𝑎𝑙𝑒
+ β

4
* 1

𝑝𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
+ β

5
* 1

𝑟𝑒𝑡𝑖𝑟𝑒𝑑
+ 𝑒𝑟𝑟𝑜𝑟

Interpretation:
<0: For a given age and gender income is on average *100% lower for part-timeβ

4
β

4

workers than full-time workers
<0: For a given age and gender income is on average *100% lower for retired thanβ

5
β

5

full-time workers

comparing linear regression models

Model: 𝑦
𝑖

= β
0

+ β
1
𝑥

1
+... + β

𝑝
𝑥

𝑝
+ ϵ

t-test: (each coefficient)𝐻
0
: β

𝑝
= 0

ANOVA test: (all the coefficients)𝐻
0
: β

1
= β

2
=... = β

𝑝
= 0

F-test: (a subset)𝐻
0
: β

4
= β

5
=... = β

𝑝
= 0

F-test

When adding a variable to the model it has an effect of  increasing whether or not𝑅2

the variable has an explanatory power
F test aims to test if there is a significant increase in by comparing the full model𝑅2

with a restricted model
● Full Model: 𝑦

𝑖
= β

0
+ β

1
𝑥

1
+... + β

𝑝
𝑥

𝑝
+ ϵ

● Restricted model: (the model without the last q𝑦
𝑖

= β
0

+ β
1
𝑥

1
+... + β

𝑝−𝑞
𝑥

𝑝−𝑞
+ ϵ

variables)

To test if the q variables add explanatory power:𝑥
𝑝−𝑞+1

,  ...  ,  𝑥
𝑝

Hypothesis:
H0: β

𝑝−𝑞+1
=... = β

𝑝
= 0

Ha: at least one of is not equal to 0β
𝑝−𝑞+1

,  ...  ,  β
𝑝



Test statistic: measure the change in 𝑅2

,𝐹 =
(𝑅

𝐹
2−𝑅

𝑅
2)/𝑞

(1−𝑅
𝐹
2)/(𝑛−𝑝−1)

𝑅
𝐹
2 ≥ 𝑅

𝑅
2

= of full model𝑅
𝐹
2 𝑅2

= of restricted model𝑅
𝑅
2 𝑅2

Degrees of freedom: F distribution with degrees of freedom q and (n-p-1)
Reject H0 if F is too large (change in is too large)𝑅2

Critical value: 𝐹
α
* (𝑞,  𝑛 − 𝑝 − 1)

interaction effects

Example: does age have a different effect on income for men and women?
Is the interaction effect significant?
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model building

Model Building in practice:
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model building and standard errors

Standard errors are derived under the assumption that:
1. Variables are selected based on (economic) theory
2. Only afterwards data are collected and analysis is performed

Data snooping - deciding which procedure to use after looking at the data.
Standard errors become invalid

If you intend to modify your analysis according to the results from the data (if  you
intend to snoop the data): Randomly separate the data into two parts:

● One part of the data for finding out the best model
● One part for applying the model and calculate the standard error



Applied statistics 2 – IBEB – Lecture
7,  week 6

Time series

● The study of the variable over time.
● Often used in economics (e.g. GDP, inflation, sales).
● Measurements are taken at (regular) intervals over time

trend
Time series plot shows an overall behaviour over time (e.g. general increase of GDP
with time)
Linear trend can be modelled by regression model, with time as an explanatory
variable:
𝑦

𝑡
= β

0
+ β

1
𝑡 + ϵ

𝑡

seasonality
Time series plot shows seasonal pattern (seasonality)
To add seasonal effects into the model:

1. Add dummy variables for different months
2. Use one month as reference category (for example, December):

𝑦
𝑡

= β
0

+ β
1
𝑡 + β

2
𝐽𝑎𝑛 +... + β

12
𝑁𝑜𝑣 + ϵ

𝑡

Removing trend and seasonality

In practice, trend and seasonality are often estimated to remove them from the time
series to obtain the dataset that is stable over time (a time series whose expected
value does not change overtime)
We can do so by plotting residuals against time:

● Estimated model: 𝑦
𝑡

= 𝑏
0

+ 𝑏
1
𝑡 + 𝑏

2
𝐽𝑎𝑛 +... + 𝑏

12
𝑁𝑜𝑣 + 𝑒

𝑡

● Define new time series: 𝑧
𝑡

= 𝑦
𝑡

− (𝑏
0

+ 𝑏
1
𝑡 + 𝑏

2
𝐽𝑎𝑛 +... + 𝑏

12
𝑁𝑜𝑣)

where 𝑧
𝑡

= 𝑒
𝑡
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Further analysis is performed on stationary time series with another regression𝑧
𝑡

model (autoregressive model): 𝑧
𝑡

= γ
0

+ γ
1
𝑧

𝑡−1
+ γ

2
𝑧

𝑡−2
+ γ

3
𝑧

𝑡−3
+ ϵ

𝑡

Autoregressive models

Shows the linear relationship between successive values of a time series (predicting
current value with past values)
AR(1): (where current value and past value)𝑦

𝑡
= β

0
+ β

1
𝑦

𝑡−1
+ ϵ

𝑡
𝑦

𝑡
=  𝑦

𝑡−1
=  

AR(L): 𝑦
𝑡

= β
0

+ β
1
𝑦

𝑡−1
+... + β

𝐿
𝑦

𝑡−𝐿
+ ϵ

𝑡

Notes on the model:
● Additional explanatory variables can be added to the model
● Can be estimated by ordinary least squares (OLS) regression
● Can be used for predictions similarly to other linear models

Differences

Differences
Taking differences often removes trend𝑦

𝑡
− 𝑦

𝑡−1

Differences of logarithms (log returns)
Difference of logarithms is a good approximation of growth rate (percentage change
from t-1 to t)

differences of logarithms: 𝑙𝑛(𝑦
𝑡
) − 𝑙𝑛(𝑦

𝑡−1
) ≈

(𝑦
𝑡
−𝑦

𝑡−1
)

𝑦
𝑡−1



Note: for small values of x ln(1+x) x≈

Goldfeld - Quandt test

Similar to the F-test for equality of variances. Goldfeld-quandt test tests if variance of
error terms is constant over time.
Linear regression model:
𝑦 = β

0
+ β

1
𝑥

1
+... + β

𝑝
𝑥

𝑝
+ ϵ

Test is performed as follows:
1. Entire time period is split in three parts and the middle part is removed (first

part becomes period 1 and third part becomes period 2)
Size of deleted middle part:
n/5 if n is small ( is the size of period 1 and period 2)2

5 𝑛

n/3 otherwise
2. Estimate model and error variance in first periodσ

1
2

3. Estimate model and error variance in second periodσ
2
2

Perform F-test to test if σ
1
2 = σ

2
2 

1. Hypothesis:
H0: σ

1
2 = σ

2
2

Ha: σ
1
2 ≠ σ

2
2

2. Test statistic:

𝐹 = 𝑙𝑎𝑟𝑔𝑒𝑟 𝑠2

𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑠2 
=

𝑠
𝐿
2

𝑠
𝑆
2

3. Degrees of freedom: test statistic follows F distribution with degrees of
freedom in numerator and in denominator(𝑛

𝐿
− 𝑝 − 1) (𝑛

𝑆
− 𝑝 − 1)

= number of observations in the sample of period with larger s𝑛
𝐿

= number of explanatory variables in the linear regression𝑝
4. Reject H0 if (Note: two sided test => )𝐹 > 𝐹

α/2
* (𝑛

𝐿
− 𝑝 − 1, 𝑛

𝑆
− 𝑝 − 1) 𝐹

α
*

Chow break test

Chow break test is to test whether the linear relationship is constant over time.
● Consider an assumed break point in time period
● Test if regression parameters are different before and after break



Before break: 𝑦 = β
0

+ β
1
𝑥

1
+... + β

𝑚
𝑥

𝑚
+ ϵ

After break: 𝑦 = (β
0

+ γ
0
) + (β

1
+ γ

1
)𝑥

1
+... + (β

𝑚
+ γ

𝑚
)𝑥

𝑚
+ ϵ

There is no change if γ
0

=... = γ
𝑚

= 0

A dummy variable with value 0 before the break and value 1 after is introduced.𝑑
The regression model can be written as:
𝑦 = β

0
+ β

1
𝑥

1
+... + β

𝑚
𝑥

𝑚
+ γ

0
𝑑 + γ

1
(𝑑 × 𝑥

1
) +... + γ

𝑚
(𝑑 × 𝑥

𝑚
) + ϵ

Change in relationship if any of are not 0γ
0
,  ...  , γ

𝑚

F test on increase 𝑅2

Full model (with dummy variables):
𝑦 = β

0
+ β

1
𝑥

1
+... + β

𝑚
𝑥

𝑚
+ γ

0
𝑑 + γ

1
(𝑑 × 𝑥

1
) +... + γ

𝑚
(𝑑 × 𝑥

𝑚
) + ϵ

Restricted model (before the break):
𝑦 = β

0
+ β

1
𝑥

1
+... + β

𝑚
𝑥

𝑚
+ ϵ

Test is performed as follows:
1. Hypothesis:

H0: γ
0

=... = γ
𝑚

= 0

Ha: at least one of not 0γ
0
,  ...  , γ

𝑚

2. The test statistic:

𝐹 =
(𝑅

𝐹
2−𝑅

𝑅
2)/𝑞

(1−𝑅
𝐹
2)/(𝑛−𝑝−1)

p = number of variables in full model = 2m+1
q = number of restrictions = m+1

3. Degrees of freedom: F distribution with q and (n-p-1) degrees of freedom
4. Reject H0 if (p-value computed only in upper tail of𝐹 > 𝐹

α
* (𝑞 , 𝑛 − 𝑝 − 1)

distribution)

Granger causality test

Recall, the results of regression models do not indicate causality, only correlation.
With time series, it is possible to test if past values of one variable are useful to
predict current values of another variable.
Note: granger causality does not guarantee causal relationship



Granger causality test

F test on increase 𝑅2

Full model: 𝑦 = β
0

+ β
1
𝑦

𝑡−1
+... + β

𝐿
𝑦

𝑡−𝐿
+ β

𝐿+1
𝑥

𝑡−1
+ β

𝑝
𝑥

𝑡−𝐿
+ ϵ

𝑡

Restricted model: 𝑦 = β
0

+ β
1
𝑦

𝑡−1
+... + β

𝐿
𝑦

𝑡−𝐿
+ ϵ

𝑡

Perform the test as follows:
1. Hypothesis:

H0: β
𝐿+1

=... =  β
𝑝

= 0

Ha: at least one not 0β
𝐿+1

,  ...  ,  β
𝑝

2. The test statistic:

𝐹 =
(𝑅

𝐹
2−𝑅

𝑅
2)/𝑞

(1−𝑅
𝐹
2)/(𝑛−𝑝−1)

q = number of restrictions = L
p = number of variables in full model = 2L

3. Degrees of freedom: F distribution with q and (n-p-1) degrees of freedom
4. Reject H0 if (p-value computed only in upper tail of𝐹 > 𝐹

α
* (𝑞 , 𝑛 − 𝑝 − 1)

distribution)
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