
EFR summary 

Applied Statistics 1, FEB11005X 
2024-2025 
 

 
 
 
 
 
 
 

 

Lecture weeks 1 to 7 
 

 
 

 



Details 
Subject:  Applied Statistics 1 IBEB 2024-2025 

Teacher: Michel van de Velden 

Date of publication: 22.02.2025 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© This summary is intellectual property of the Economic Faculty 
association Rotterdam (EFR). All rights reserved. The content of this 
summary is not in any way a substitute for the lectures or any 
other study material. We cannot be held liable for any missing or 
wrong information. Erasmus School of Economics is not involved 
nor affiliated with the publication of this summary. For questions or 
comments contact summaries@efr.nl  

mailto:summaries@efr.nl


Applied Statistics 1 - IBEB  
Lecture 1 - Week 1 
 

Introduction 
 
In science, we run various experiments and collect data - qualitative or quantitative 
observations of the objects we want to study. Statistics is the science of learning 
from this data. The goal of statistics, particularly in psychology, is to be able to make 
predictions about a population based on a sample. 
 
In order to be able to do statistics, you must begin with a set of data. There are many 
components that make up a set of data: 

○ Cases are the objects described by a set of data  
○ A variable is a particular trait of a case 

 A qualitative or categorical variable is a variable that does not have a 
numeric value. They place cases into groups of categories 

   A quantitative variable is a variable that has a numeric value 
○   A label is a special variable used to distinguish between cases 
○ A value is something that a variable holds 
○ A distribution of a variable tells us what values the variable takes, and how 

often these values occur for that particular variable 
 

An example to explain this: If you think about a list of psychology students in 
Amsterdam, each student is a case; characteristics about them, such as age, sex, 
year of study, etc. are variables. Each student has a student number - this is a label. 
If a student. for example, were 24 years old, 24 would be the value associated with 
the variable "age." 
 
Different variables are measured with different instruments. You need to make sure 
that every variable actually measures what you want it to measure. A poor variable 
choice can lead to wrong and misleading conclusions. If you find that the variables 
in your data set do not align with the goal of your research, it is also possible to 
create a new variable by adjusting another variable. 
 
 



Graphing the distribution of categorical variables 
 
For categorical variables, bar graphs and pie charts are used because of the nature 
of the distribution of these qualitative variables. The distribution of categorical 
variables lists each category and gives either the count or percentage of cases that 
fall in each category; these distributions can then be turned into bar graphs or pie 
charts. 

○  A bar graph lists each category (in any order) along the X-axis and the count 
along the Y-axis. Bars for each category are then drawn according to the 
count of each category. While the categories can be listed in any order, you 
should consider presenting your data in an order that makes sense to you and 
fits the purpose of your research. A bar graph whose categories are ordered 
from most frequent to least frequent is called a Pareto chart. 

 

○  A pie chart shows the percentages of the total count that each category takes 
up.Here, it is important to include every category, so that the total of the 
percentages is always 100%. In some cases, when specific categories have 
very low counts, it is acceptable to include an "Other" category on the pie 
chart. 



 

Graphing the distribution of quantitative variables 
 
For quantitative variables,stemplots (or stem-and-leaf plots) and histograms are 
used. 
In a stemplot, each observation is separated into a stem and leaf. The stem is 
everything except the last digit in the value and the leaf is simply the last digit. In a 
vertical column, the stems of the dataset are written from least to most, and each 
leaf is written in the row of its corresponding stem, in ascending order. This allows us 
to have an overview of our dataset. 

 
● If you would like to compare two distributions for the same variable, for 

example the IQ scores of boys vs. girls, you can construct a back-to-back 
stemplot, with common stems and leaves on either side of the stem. 



● One can use a split stemplot to double the numbers of stems when all the 
leaves would otherwise fall on just a few stems. They split each stem into two: 
one for leaves from 0-4 and one for leaves from 5-9. 

 
A histogram separates the range of values into classes of equal width and shows the 
count or percentage of each class, similar to a bar graph. In a histogram, any 
number of classes can be used; however it is important to use classes of equal width. 

 
● In a histogram, we react to the area (size) of the bars in the graph. By using 

bars of the same width, we ensure that all of the classes are fairly represented. 
● You have to find the right amount of classes and ranges to make an 

aesthetically representative graph. Too many classes may result in a 
"skyscraper" effect, while too few may lead to an overly flat graph. 

While bar graphs and histograms share many characteristics, there are several 
notable differences: 
 
Bar Graphs Histograms 

used for qualitative or categorical 
variables 

used for quantitative variables  

compare the counts of different items show the distribution of counts of a 
variable 

do not need to have a 
measurement scale on the X-axis 

use a continuous scale along the X-axis 
 



compare the counts of different items do not have spaces between bars 
 
By plotting your data, you can make statistical graphs to help you understand your 
data. In examining your graph, there are several features you should pay attention 
to. The tails of a graph refer to their extreme values of distribution. The higher values 
make up the right tail or high tail, and the lower values make up the left tail or lower 
tail. 
 
In any graph of date one must look at the shape of the graph and try to see an 
overall pattern: 
 
Center is the midpoint of the data and the spread is the range that the data covers. 
Once can describe the overall pattern of a histogram by its shape, center and 
spread. 
 
Individual data points that fall outside the overall pattern are called outliers. These 
are identified by using your best judgment and it is important to search for 
explanations behind these outliers. Remember to look beyond just the extreme data 
points. In some cases, outliers are useful in pointing out mistakes that were made 
during the experiment, for example: errors in recording, malfunctions in equipment, 
or other unusual circumstances. 
Modes are peaks in the data. Distributions that have one main peak are called 
unimodal. 

● When the right and left sides of the histogram are approximately mirror 
images of each other then the distribution is symmetric. 

● The distribution is skewed to the right (also called skewed toward large 
values) if the right tail is much longer than the left tail.  

● The distribution is skewed to the left if the opposite is true. 
 
It is always a good idea to collect data collected over time in chronological order. 
This is to avoid misunderstandings, as statistical displays that ignore time as a 
variable (histograms and stem plots) do not clearly show a systematic change over 
time. 
A time plot of a variable plots each observation against the time at which it was 
measured.Time is always plotted on the horizontal (x) axis and the variable 
measured over time is plotted on the vertical (y) axis. 
 



Statistical description of data 
 

Central Tendency 
 
While graphs are a good way to get an overview of your data, numerical descriptions 
are much more specific. It is important to remember that these numbers, like graphs, 
are tools to help us understand and interpret the data. 
 
The numerical description of any dataset begins with a description of the middle. 
There are two common ways to describe the midpoint of a distribution; the mean 
and the median. 
 
Mean 
 
The mean is the average value of all your data points. To find the mean , for a set of 𝑥
observations, you simply sum all of their values and divide by the total number of 
observations. Thus, for a data set, + + …+ , the mean can be found using 𝑥 1 𝑥 2 𝑥 3 𝑥 𝑛
the following equation: 
                                    + + …+  𝑥 =  (𝑥 1 𝑥 2 𝑥 3 𝑥 𝑛)/𝑛
From this we can derive a more compact expression 

                                    𝑥 = ∑𝑥𝑖𝑛
In this formula,  denotes the function “sum”. The bar over the x signifies the mean of ∑
all the x-values. 
 
The main disadvantage of the mean is that it is very sensitive to extreme values in 
the data set, and skewed distributions will undercut the integrity and accuracy of 
using the mean as the midpoint of your data. Because the mean cannot help but be 
influenced by these extreme values, it is not a resistant or robust measure. Robust 
measures are not easily influenced by a few data points. 
 
Median 
 
The median is the literal midpoint of a distribution. Half of the observations in a 
dataset fall above, and half fall below the median. To find the median: 



1.    Order all observed values from smallest to largest. 
2.    If the number of observations is uneven, the median is the observation in the 

exact centre of the list. The median can be found by counting (n+ 1)/2 
observations up from the bottom of the ordered list. 

3.    If the number of observations is even, the median is the mean of the two 
centre observations. The location of the median is again (n+1)/2 from the 
bottom of the list. 

If a distribution is completely symmetrical, then the median and mean are the same 
thing. In a distribution that deviates to the left or the right, the average is located in 
the tail more than the median. This is because the mean is much more affected by 
extreme scores. The tails of a distribution consist of extreme scores. 
 
The simplest numerical description of a distribution should consist of a measure of 
the midpoint (such as the average and the median), but also a measurement of the 
spread of a distribution. 
 

Spread 
 
We can describe the spread of a distribution by calculating various percentiles, the 
median splits the distribution exactly in half, and that is why we say that the median 
is the fiftieth percentile. However, there are also upper and lower quartiles on either 
side of the median. Each quartile is about a quarter of the data. 
Quartiles can be calculated as follows: 

1.    First put all scores in increasing order. Then, calculate the median of the data 
set. 

2.    The first quartile (Q1) is the median of the lower half of the distribution. Its 
position is to the left of the location of the overall median. 

3.    The third quartile (Q3) is the median of the higher half of the distribution. Its 
position is to the right of the location of the overall median. 

The p  percentile of a distribution is the value by which p percent of the scores is 𝑡ℎ
the same or below it.  
The five-number summary of a distribution consists of the smallest observation, the 
first quartile, the median, the third quartile and the largest observation. So the 
five-number summary is: 
 
                          Minimum   Q1    M     Q3    Maximum 
 
These five values are clearly visible in box plots: 



● The outer two edges of the box in a box plot stand for Q1 and Q3. 
● The median is shown by the line in the middle of the box. 
● Two lines (upwards and downwards from the box) show the maximum and 

minimum values. 
An overview of the largest and the smallest value says very little about the variation 
within the data. The distance between the first and the third quartile is a more robust 
measure of spread. This distance is referred to as the interquartile range (IQR), and is 
calculated as follows: IQR= Q3 - Q1 
 
Quartiles and the IQ are not affected by changes in the tail of a distribution; they are 
quite robust. However, no single numerical value of dispersion (such as the IQR) is 
very useful to describe the spread of skewed distributions (left or right). It is often 
possible to detect skewness using the five-number summary. A deviation to the left 
or right can be seen by looking at how far the first quartile and the lowest score are 
from the median (left tail) and by looking at how far the third quartile of the highest 
score is (right tail). 
The standard deviation measures the spread of the distribution to be by looking at 
how far the observations are from the mean. 
The variance ( ) of a data set is the average of the standard deviations, squared. 𝑠 2
The formula is :  𝑠 2 = (𝑥 1−𝑥) 2+(𝑥 2−𝑥) 2+...+(𝑥 𝑛−𝑥) 2𝑛−1
Another correct formula is   𝑠 2 = ∑(𝑥 𝑖−𝑥) 2

𝑛−1
 
The variance and standard deviation measure the distance between the 
observations and the mean. Since some observations fall above and some 
observations below the mean, squaring all the values will make all of the variances 
(and consequently, standard deviations) positive. Therefore, s  and s will be large if 2
observations are widely spread about the mean, and small if the observations are 
relatively close to the mean. 
 
The standard deviation is particularly useful in normal distributions. The standard 
deviation is preferred over the variance because finding the square root of the 
variance ensures that spread is measured according to the original scale of the 
variable. 
 
Some important properties of the standard deviation: 



● Standard deviation, s, is a measure of the dispersion from the mean, and 
should only be used if the mean (and not the median) is chosen as a measure 
of midpoint. 

● s = 0 when there is no spread present in a distribution. This only happens if all 
values are the same. If this is not so, which standard deviation is greater than 
zero. The more there is spread, the greater will be s. 

● The standard deviation, like the mean, is not robust. The presence of outliers 
can make them very large. The standard deviation is even more sensitive to 
extreme scores than the mean. 

● s has the same units of measurement as the original observations. 
 
Distributions with a strong deviation (left or right) have large standard deviations. In 
this case, it is not very practical to calculate the standard deviation. The five-number 
summary is often more suitable than the average and the standard deviation when 
an abnormal distribution needs to be described or when a distribution has extreme 
outliers. The use of the mean and the standard deviation is just more convenient 
when there are few outliers present and if the distribution is symmetrical. 
 

Boxplot 
 
A boxplot is a graphical representation of the distribution of a dataset. It provides a 
summary of a data set's minimum, first quartile (Q1), median (Q2), third quartile (Q3), 
and maximum values. The plot is particularly useful for visualizing the spread and 
skewness of the data, as well as for identifying potential outliers. 

 
Key Parts of a Boxplot: 
Q1 (First Quartile): The value below which 25% of the data fall. 
Q2 (Median): The middle value, dividing the dataset into two halves. 
Q3 (Third Quartile): The value below which 75% of the data fall. 
Whiskers: Show the spread of data outside the quartiles, typically to 1.5 * IQR. 



Outliers: Data points outside the range defined by the whiskers. 
 
Purpose and Benefits: 
-Boxplots make it easy to understand the spread and symmetry of the data. 
-You can use multiple boxplots side-by-side to compare different datasets. 
-Outliers are easily identifiable in a box plot. 
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Density Curves 
 

Definition 
 
Because the manual creation of histograms is time consuming and impractical, 
scientists often use computer programs to create histograms. The advantage of 
using computer programs is that they can also make an appropriate curve on the 
basis of the histogram. 



These are called density curves. Density curves "flow" with the peaks of a histogram 
and are a mathematical model for a distribution. 

● A density curve is always made on or above the horizontal axis. 
● The total area within the curve is always equal to 1. 
● A density curve describes the general pattern of distribution. 

 
 
The median of a density curve is the point that divides the area under the curve in 
half; the equal-areas point. The mean of a density curve is the balance point at 
which the curve would balance if it would be made of solid material. The median and 
the mean are equal for a symmetric density curve. The average of a different 
distribution lies more in the direction of the long tail, while the median lies more in the 
direction of the peak. 
 
As with distributions, density curves can have different shapes. A special variant is 
the normal distribution, in which both halves of the curve are symmetrical. Outliers 
are not described by a density curve. 
 
Normal Distribution 
 
Normal distributions are an important subset of density curves. They are unimodal, 
symmetrical, and bell-shaped. The mean and standard deviation determine the 
shape of a normal distribution: 



The mean of a curve is indicated with the letter . Changing y (while the standard 
deviation is unchanged) will ensure that the position of the curve moves on the 
horizontal axis, while the distribution remains the same. 

 
 
The standard deviation is represented with the symbol . The standard deviation is σ
the measure of dispersion associated with a normal distribution. A curve with a 
larger standard deviation is wider and lower. 

○   Normal distributions are good descriptions of real data. Many real-life 
examples of data are normally distributed, including distributions of height, 
weight and IQ. 

○  Normal distributions are good approximations of the outcomes of probability 
calculations, for example in the case of tossing a coin. 

○   Normal distributions are useful because many statistical inference procedures 
are based on normal distributions 

 
The 65-95-99.7 Rule: ina normal distribution with mean μ and standard deviation  σ:

● Approximately 68% of the observations fall within one standard deviation ( ) σ
of the mean (μ) 

● Approximately 95% of the observations fall within two standard deviations of 
the means. 

● Approximately 99.7% of the observations fall within three standard deviations 
of the mean. 

 
The normal distribution with mean μ and standard deviation  is written as N(μ, ). σ σ
 



 
 
If, for example, someone has scored sixty points on a test, you do not know whether 
this is a high or low score in comparison to all the other scores. It is therefore 
important to standardize the value.If x is a score from a distribution with mean μ and 
standard deviation , then the standardized value of x is: σ
z = (x- ) / . µ σ
 
A standardized value is often referred to as a z-score. A z-score tells us how many 
standard deviations away from the mean a particular observation is, and in which 
direction. The standardized values of a standard normal distribution have a mean of 
0 and a standard deviation of 1. Together, the standardized normal distribution has 
the N (0, 1) distribution. 
 
The calculation of the proportions in a precise manner within the normal distribution 
can be done by means of z-tables or software. Z-tables and software often calculate 
a cumulative proportion: this is the proportion of observations in a distribution that is 
exactly equal to, or is below a certain value. 
 
The Z-table can be used to determine proportions under the curve. To do this we 
must first have standardized scores. Suppose you wanted to know how many 
students had a score above or below 820 on a particular test. Assuming you have a 
mean score of 1026 and a standard deviation of 209: 

● The corresponding z-score would be: 820-1026 / 209 = -0.99. 
● Using the z-table, look up the proportion that belongs to -0.99. You will find the 

p-value to be 0.1611. This area refers to the area to the left of -0.99. The area to 
the right of -0.99 is therefore 1-0.1611 = 0.8389. 

● This means that 16% of the test-takers scored below 820 and below, while 84% 
of the test-takers scored above 820. 
 



 
 
Assessing the normality of data 
 
Stem-and-leaf plots and histograms are often used to see if a distribution is 
normally distributed. However, the normal quantile plot is the best graphical way to 
discover normality. It is uncommon to make a normal quantile plot by hand, however 
in order to understand how software would make one, we would follow these steps: 

1. All scores must be put in increasing order. The percentile that each value 
occupies is then recorded 

2. z-values associated with these values must then be found. These are also 
referred to as normal scores. 

3. Each data point is to be graphically connected with the corresponding normal 
score. If the distribution is (almost) normally distributed, then the data points 
will lie on an approximately straight line. Systematic deviations from the 
straight line indicate a non-normal distribution. Outliers are data points that 
are far from the general pattern of the plot. 

 

Scatterplots 
 

Definition 
 
Relationships between two quantitative variables are often displayed in a scatter 
plot. 

● The two variables need to be measured at the same individuals 



● The values of one variable are put on the X-axis, while the values of the other 
variable are put on the Y-axis. Each individual in the data is processed as a 
point in the graph, on the basis of the scores achieved by the person on the 
X-axis and the Y-axis. 

● The explanatory variable corresponds to the X-axis. For this reason, the 
explanatory variable is also referred to as the X-variable. The response (Y) 
variable will be put on the Y-axis. 

● If there is no distinction between explanatory and response variables, then it 
does not matter, which variable ends up on which axis. 

 
Time plots are a special type of scatterplots, that uses time as an explanatory or 
x-variable. To get a first impression of a scatter plot, it is useful to: 

● Look at the general pattern and deviations. 
● Describe the shape, direction, and the strength of the relationship. 

 
Scatter plots can take on many forms and shapes. Many scatter plots show linear 
relationships; the points lie on a straight line. The strength of a relationship is 
determined by looking at the degree to which points on the graph follow a specific 
form such as a line. 

 
 
The relationship between two variables can be positive or negative. 
❖ Two variables are positively associated when high scores on one variable are 

associated with high scores on the other variable. An example is that a high 
score in height is often associated with high scores in weight. 



❖ Two variables are negatively associated when high scores on one variable are 
associated with low scores on the other variable. For example, there is a 
negative correlation between test anxiety and performance on an exam. The 
more test anxiety,the lower the exam score. 

 
Correlation 
 
The scatterplot of a distribution describes the shape, direction, and strength of a 
relationship between two quantitative variables. It can be misleading to make 
statements about the strength of this relationship with the naked eye. 
 
By changing the numbers on the axes, any distribution can appear to have a strong 
correlation. while it might not necessarily be the case. The reverse is also possible. For 
this reason we use the correlation measure. 

 
 
The correlation measures the direction and the strength of a linear relationship 
between two quantitative variables. Often, the letter r is used to describe the 
correlation. 
 
Suppose we have collected data for variables X and Y for n number of people. The 
average and standard deviation of the two variables are then € and S for the 
x-values and y-bar and sy for the y-values. 



 

The correlation, r, between X and Y is:  𝑟 = 1𝑛−1 ∑ 𝑥𝑖−𝑥𝑠𝑥 × 𝑦𝑖−𝑦𝑠𝑦
By using this equation, all of the values for the X and Y variables will be standardised. 

 
Covariance 
 
Correlation is a convenient measure of linear association 

 𝐶𝑜𝑣 𝑥, 𝑦( ) = 1𝑛−1 ∑ 𝑥𝑖 − 𝑥( ) 𝑦𝑖 − 𝑦( )
 

 
Least-squares regression 
 
A regression line is a straight line that describes how a response variable Y changes 
as explanatory variable X changes. 
 
We often use a regression line to predict the value of Y for a given value of X. For 
regression,in contrast to correlation, however, it is important that we have specific 
explanatory and response variables. 
 
The least-squares regression line of x on y is the line that makes the sum of the 
squares of the vertical distances of the data points from the line as small as possible. 
The least-squares regression line is: 
  𝑦 = 𝑎 + 𝑏𝑥
With slope:   𝑏 = 𝑟 𝑠𝑦𝑠𝑥
and intercept    𝑎 = 𝑦 − 𝑏𝑥
Even with the best possible regression line, not all of the points lie precisely on the 
line. 
Some items might therefore not be well predicted on the basis of the regression line. 
The points that deviate from the regression line are called residuals. 
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Least-squares regression: JASP 
 
• Scatterplot:  
– Descriptive statistics.  
– Basic plots: Tick Correlation plots  
– Customizable plots: Scatter plots  
• Correlation:  
– Descriptive statistics. Correlation (Use Pairwise complete observations)  
• Regression: 
– Classical>Linear Regression 

 
 
Least-squares regression: Residuals and Outliers 
 
  A residual is the difference between an observed value of the response variable and 
the value predicted by the regression line. One thing we must note is that the mean 
of the least-square residuals is always zero. So in formula: 
Residual = observed y - predicted y = y -  𝑦
 
One can plot the regression residuals against the explanatory variable. Such a 
scatter plot is called a residual plot. When you examine a residual plot you must look 
at several things: 

1.    A curved pattern (means relation is not linear) 
2.    Increasing or decreasing spread about the line 



3.    Individual points with large residuals 
4.    Individual points that are extreme in the x direction. 

 
With a residual plot, it can be determined whether a regression line fits well. If the 
regression line fits the general pattern of the data, no patterns will be present in the 
residuals. An outlier is an observation that is far from the overall pattern of a residual 
plot. 
 
Items that are outliers in the Y direction of a scatter plot have large residuals, but this 
does not necessarily apply to other residuals. 

 
 
Interpretation 
 

● Outliers with large residuals may indicate points that are far from the 
regression line, suggesting unusual or extreme values in either the x or y 
variable (or both). 

● Influential outliers are those that not only have large residuals but also 
significantly affect the slope or intercept of the regression line when included 
in the model. These are points that can disproportionately influence the 
model's fit and predictions. 

● Outliers in x vs. y: Outliers in the x variable (independent variable) can be 
particularly influential, even if they are not extreme in terms of the y variable 
(dependent variable), because they may exert a strong effect on the model's 
parameter estimation. 



 
 

Cautions about correlation and regression 
 

A comparison 
 

 Correlation Regression 

Goal 

Measure for strength and 
direction of relationship 
between two quantitative 
variables 

Prediction from one variable 
by another using a straight 
line 

Role variables Both variables have the same 
role 

There is one response 
variable y and one 
explanatory variable x. 

 Both measures are sensitive to outliers 
 

Extrapolation 
 
Extrapolation is the use of a regression line for prediction far outside the range of 
values of the explanatory variable x that you used to obtain the line 
 



The relationship between two variables can often be best understood by also looking 
at the effect of other variables. Lurking variables can make a correlation or a 
regression misleading. 
 

Lurking variables 
 
A lurking variable is a variable that is not included in the study as an explanatory or 
response variable, but may affect the interpretation of the relationship between 
these variables. A lurking variable can falsely suggest a strong relationship between 
x and y, or it can hide a relationship. 
 
A (strong) relationship between an explanatory variable (X) and a response variable 
(Y) is not evidence that X causes changes in Y. Correlation says nothing about 
causality. In addition, it is important to be careful when working with regressions of 
averaged values. 
 

Association ≠ Causation 
 
Correlation does not imply causation: A strong correlation between two variables 
does not necessarily mean that one variable causes the other to increase. 
To establish causal relationships, experiments are typically required, although this is 
not always feasible. 
 
In some cases, causation can be inferred without experiments if the following 
conditions are met: 

● A strong association between the variables 
● Consistent patterns of association 
● Larger values of the independent variable (x) lead to larger effects 
● The cause occurs before the effect in time 
● The cause is logically plausible 

 

Relations in categorical data 
 
Conditional distributions are the same as the marginal distribution for either variable, 
meaning that the distribution of one variable does not depend on the value of the 
other variable. Thus, There is no relation between 2 variables if the conditional 
distributions are the same as the marginal distribution for either variable. 



Marginal Distribution: The distribution of a single variable, ignoring the effect of the 
other variable. It represents how the values of a variable are distributed across all 
observations. 
 
Conditional Distribution: The distribution of one variable, given the value of another 
variable. It tells us how the distribution of one variable changes when we know the 
value of the other variable. 
 

Simpson’s paradox 
 
A situation where a pattern or trend that appears when you look at different groups 
separately can disappear or even flip when you combine those groups into one 
larger dataset. In other words, the overall trend in the combined data might be 
completely different from the trends within the individual groups. This paradox 
highlights the importance of considering how data is grouped and how grouping 
can affect the conclusions we draw. 
 

Producing data 
 

Observation vs experiment 
 
Studying samples is one type of observational study. Observational studies are 
studies in which individuals are observed and variables are measured. There is no 
intervention and the experimenter does not have an effect on the reactions of the 
individuals. 
 
In contrast, an experiment is a study in which an intervention is carried out 
intentionally in order to see how people respond. Experiments are often preferred to 
observational studies, because we have more control over the variables in 
experiments. 
 

Confounding 
 
Two variables (explanatory variables or lurking variables) are confounded when their 
effects on a response variable cannot be distinguished from each other. 
 



Designing samples 
 
The whole group of individuals we want to know about is called a population. Often 
researchers are interested in how the population looks at certain things. In these 
cases, sample surveys are given to a random group of people. Sampling means that 
we study a part of a population to draw conclusions about the entire population. 
 
The design of a sample survey refers to the method used to choose the sample from 
the population. The proportion of the original sample who actually provide usable 
data is called the response rate. 
 
Voluntary response sample: consists of people who choose to participate in a 
survey. These kinds of samples are biased because people with strong opinions tend 
to respond more frequently. 
 
In order to draw correct conclusions, it is important to apply randomisation 
techniques in the selection of samples. When the design of a study systematically 
favors certain outcomes then the study is biased. 
 
Simple random sample (SRS): is a sample where study participants have an equal 
chance of being actually selected from the population. There are several different 
random sampling designs. 
 
Probability sample: is a sample chosen by chance. We need to know which samples 
are possible and what chance each sample is associated with. A probability sample 
can be simple random or stratified. 
 
A stratified random sample: is often used when there is an investigation of a large 
population. SRS is often not adequate enough. In order to attract a stratified random 
sampling the population must first be divided into groups of similar individuals. 
These groups are called strata. Then, separately for each stratum a SRS is done. The 
sum of the SRSs make up the full stratified random sample. 
 

Bias 
 

Definition 



Bias in the design of a study refers to a systematic error that distorts the results or 
conclusions by favoring certain outcomes over others. Bias can lead to incorrect 
inferences, misleading conclusions, and poor decision-making. 
 
There are three main types of bias: 

1. Selection Bias 
2. Information (Misclassification) Bias 
3. Confounding Bias 

 

Selection bias 
Selection bias occurs when the sample used in a study does not accurately 
represent the larger population, leading to distorted or unrepresentative results.  
 
There are several types of selection bias: 

● Selection Effects: This occurs when only a specific, non-random subset of data 
is observed, which does not reflect the entire population. For example, only 
studying a certain age group might not be applicable to the general 
population. 

● Self-Selection Bias (or Publicity Bias): This occurs when individuals volunteer to 
participate in a study, leading to over- or under-representation of certain 
groups. For instance, people without internet knowledge might avoid 
participating in an online survey, skewing the results. 

● Nonresponse Bias: This happens when selected participants fail to respond or 
provide data. If the non-respondents differ significantly from those who 
respond, it can lead to biased conclusions. 

● Texas Sharpshooter Bias: This happens when patterns are identified after data 
collection, and then theories or hypotheses are formulated based on those 
patterns. It is a form of post-hoc reasoning where researchers "find" results by 
selectively focusing on specific data points that seem interesting or extreme. 

● Confirmation Bias: This is the tendency to search for, interpret, or recall 
information in a way that confirms one’s pre-existing beliefs or hypotheses, 
while ignoring contrary evidence. 

 
Example: 

● Conspiracy theories often arise due to confirmation bias, where people 
selectively search for information that supports their belief, disregarding 
evidence to the contrary. 



● Football coaches or analysts may overemphasize certain statistics (like a 
lucky goal or a few successful plays) while ignoring the overall performance of 
a team. 
 

Information (misclassification) bias 
 
Information bias arises when there is a systematic error in how data is collected or 
measured, leading to inaccurate conclusions. There are different forms of 
information bias: 

● Response Bias: Occurs when respondents do not provide truthful answers due 
to factors such as social pressure, the way questions are phrased, or how the 
survey is conducted. For example, people may underreport undesirable 
behaviors (e.g., smoking or drinking) due to social stigma. 

● Recall Bias: This happens when people who have been exposed to a certain 
factor (such as a health risk) are more likely to recall or remember their 
exposure than those who have not. This can skew results, particularly in 
retrospective studies. For example, people with a disease may more easily 
recall their past behaviors or exposures than healthy individuals, leading to 
distorted findings. 
 

Confounding bias 
 
Confounding bias occurs when the relationship between two variables is distorted by 
the presence of another, unaccounted-for variable (a "confounder"). A confounder is 
an external factor that is related to both the independent variable and the 
dependent variable, which can lead to incorrect conclusions about the cause- 
and-effect relationship. 
 

● Example 1: The apparent link between coffee drinking and cancer may be 
confounded by smoking, as people who drink a lot of coffee may also be more 
likely to smoke, and it is smoking (not coffee) that increases the risk of cancer. 

● Example 2: A study may find that women earn less than men on average, but 
this observed relationship might be confounded by level of education. If 
women, on average, have less education than men in the sample, the real 
cause of the wage gap might be education rather than gender itself. 
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Designing experiments 
 

Definition 
 
The individuals that we use for an experiment are called experimental units. When 
these units are people, we call them subjects. 
 
A specific experimental condition that is applied on the experimental units is called a 
treatment. 
 
The distinction between explanatory and response variables for experimentation is 
important because we want to establish causality. Often, this will succeed only with 
real experiments. The explanatory variables are called factors. Oftentimes, studies 
look at the combined influence of several factors. In such an experiment, each 
treatment is formed by combining specific values or quantities of the factors. These 
specific values are referred to as levels. 
 

Comparative experiments 
 
In many laboratory experiments in science and engineering only one intervention is 
carried out at a time. This intervention is then applied to all experimental units. Such 
a set-up is called a comparative experiment and is summarized as follows: 
 
Post-test only one group: 

 
 
Problem: The placebo effect is a potential issue in this experimental design. When 
participants are aware they are part of an experiment, they may report 



improvements or changes simply because they expect something to happen, even if 
they did not actually receive the treatment. This psychological response can distort 
the findings. 

●  In medical experiments, the placebo effect plays an important role in the 
validity of the experiments. Simply taking a pill, even if the pill does not contain 
any of the active ingredients being researched, often influences the 
behaviours of the test subjects in the placebo group. 
➢ Quantity matters. More pills is better!  
➢ “Ritual” matters (more invasive, more effective: Needles are better than 

pills)  
➢ Colour matters (Red/orange: alerting, blue/green: sedating).  
➢ More expensive placebo are more effective  
➢ Placebo’s can have side effects! 

 
On the other hand, in a post-test with only one group design, the outcomes observed 
could be influenced by the placebo effect, making it difficult to separate the actual 
effects of the treatment from the psychological effects. In this setup, the results of the 
placebo effect are confounded with the real treatment effects, leading to misleading 
conclusions. 
 

Overcoming the placebo effect 
 
To overcome the placebo effect, researchers introduce a control group in the 
experiment. This group participates in the study but does not receive the treatment 
being tested. Instead, the control group typically receives a placebo—a treatment 
that has no therapeutic effect (e.g., a sugar pill or a sham procedure). By comparing 
the results from the experimental group (which receives the treatment) with those 
from the control group, researchers can isolate the true effects of the treatment from 
the psychological effects caused by expectations. 

 

Issue: both the subjects and the experimenters may know who is receiving the 
treatment and who is receiving the placebo. This knowledge can introduce bias, as 



either the subjects may report changes based on their expectations, or the 
experimenters may unconsciously interpret results differently depending on the 
group. 
solution: use a double-blind design. In a double-blind study, neither the participants 
nor the experimenters know which group (treatment or placebo) the participants are 
assigned to, which helps to prevent unconscious bias from affecting the results. 

 

 

Basic principles for designing experiments 
 

- the use of a control group to account for the confounding variables 
- assign the subjects randomly to the treatments (blindly) 
- use many subjects 

However, even when these principles are followed, it is still possible for the 
treatment's effect to appear much larger than expected, resulting in a statistically 
significant effect. This means that the observed effect is unlikely to have occurred by 
chance. Despite adhering to these guidelines, experiments may still not perfectly 
reflect real-world conditions, as controlled environments often differ from the 
complexities of real-life situations. 
 

Assignment in experiments 
 
When designing an experiment, researchers need to decide how to assign 
participants or experimental units to different treatments. 

- Completely randomized design: subjects are randomly assigned to different 
treatment groups. The goal is to ensure that each subject has an equal 
chance of being placed in any treatment group, minimizing bias and making 
sure the results are not influenced by any pre-existing differences among 
subjects. 

- Matched pairs designs: two treatments are compared in subjects that are 
matched based on particular characteristics. This way, subjects in each pair 



are similar to each other rather than unmatched subjects. The differences in 
their responses can then be observed and recorded and further analysed. 

o Example: If testing car tires, we might have two cars run laps on the 
same track under the same conditions and measure the wear on each 
tire. Alternatively, we could use the same car twice, each time with a 
different tire, so that the variation due to the car or the driver is 
controlled for. By comparing the wear on the two tires while holding the 
car and driver constant, we can more accurately attribute differences 
to the tires themselves. 

- Block design: researchers make use of so-called blocks. A block is a group of 
experimental units or subjects that are similar to each other. In a block design, 
the random assignment of experimental units of treatments done separately 
for each block. 

 

Population & samples 
 

- The population is the entire group of individuals from which we want 
information. 

- A sample is a part of the population that we actually gather data from. This 
sample is used to make inferences or conclusions about the entire population. 

 
 
Statistical inference is using facts about a sample to draw conclusions or make 
predictions about a population. 
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Randomness 
 
An event is considered random if the outcome of any single trial is unpredictable, yet 
over the long term, a pattern emerges in the results. 
The probability of a specific outcome in a random experiment is defined as the 
proportion of times that outcome occurs if the experiment is repeated infinitely. 
When studying randomness: 

● Independent Trials: There must be a long series of independent trials, where 
the result of one trial does not influence the results of others. 

● Empirical Basis of Probability: Probability is based on empirical observation. 
While computer simulations can model random behavior using 
predetermined probabilities, real-world probabilities are best estimated by 
observing many actual trials. Simulations are valuable because they allow for 
extended runs of trials, which might not be feasible in real life. 

● Short vs. Long Runs: Short runs of trials provide only rough estimates of 
probabilities, while long runs give more accurate approximations. 
 

Schematic way of looking at probability 
 

 



Probability rules 
 

1.    For any event A, 0 < P(A) < 1. 
2.    The probability of the entire sample space S is P(S) = 1. 
3.    Complement Rule: The probability that event A does not occur is P (AC) = 1 - 

P(A), where AC represents the complement of A. For example, if A is the event 
that a randomly chosen teacher is female, then AC is the event that the 
teacher is male. 

4.    Addition Rule for Disjoint Events: Two events A and B are disjoint (mutually 
exclusive) if they have no outcomes in common and cannot occur 
simultaneously. In this case, 
P(A or B) = P(A) + P(B). 
 

Random variables 
 
A random variable is a variable whose value is a numerical outcome of a random 
phenomenon. There are two types of random variables: 

1. Discrete Random Variable: 
The variable takes on a finite (or countable) number of outcomes. 
Example: If the sample space consists of {1, 2, 3, 4}, X is a discrete random variable. 
The possible values are separated on a number line. 
 

2. Continuous Random Variable: 
The variable can take on an infinite number of possible values, often within an 
interval. 
Example: If X represents a value between 0 and 1, the sample space is {all numbers 
between 0 and 1}. The possible values are not distinct on a number 
line. 
 

Probability models 
 
Newcomb-Benford’s Law states that in many naturally occurring datasets, the 
leading digits of numbers do not appear with equal frequency. Instead, smaller digits 
(like 1, 2, or 3) are much more likely to be the leading digit compared to larger digits 
(like 8 or 9). This pattern diverges significantly from what we might expect if the digits 
were distributed uniformly (i.e., if each digit had an equal chance of appearing as the 
first digit). 



This law is an example of a specific type of discrete probability distribution. It applies 
to datasets where the numbers span several orders of magnitude, such as 
populations, financial figures, and even physical measurements in nature. 
 

Probability distributions 
 
Probability distributions assign probabilities to different outcomes or events. 

● Visualizing a probability distribution often involves drawing a density curve, 
which represents how probabilities are distributed over the range of possible 
outcomes. 

● Every probability distribution is associated with two key measures: 
1. The mean (µ), which represents the expected value or average of the 

outcomes. 
2. The standard deviation (σ), which measures the variability or spread of the 

outcomes around the mean. 
- For discrete distributions, these metrics are defined as follows: 

o The mean (µ) is the weighted average of all possible outcomes, 
where each outcome is weighted by its probability. 

o The standard deviation (σ) is the square root of the weighted 
average of the squared deviations from the mean. 
 

Continuous random variable 
 

1. Density Curve: 
● The probability distribution of a continuous random variable is represented by 

a density curve, which shows how probability is distributed over the range of 
possible values. 

 
2. The probabilities are surfaces below the curve: 
●  Unlike discrete variables, where probabilities are assigned to specific 

outcomes, the probability of a continuous random variable is calculated as 
the area under the curve over an interval. 

●   For example, the probability that X falls between two values a and b (i.e., P(a < 
X ≤b is the area under the curve from a to b. 
 

3. Point Probabilities are Zero: 
●   For any specific value X = a, the probability is always zero: P(X = a) = 0. 



● This is because a single point has no "width" in a continuous distribution, and 
probability is derived from areas, not individual points. 

 
4. Intervals are Meaningful: 
●   Since single points have no probability, only intervals of values have 

meaningful probabilities. 
●   For example, the probability that X lies between 5 and 10 is meaningful, but the 

probability that X equals exactly 5 is not. 
 

5. Analogy - Line Segment: 
●   A continuous random variable is comparable to a line segment: 
●   The segment itself has a positive length (representing the probability of an 

interval). 
●   However, no individual point on the line segment has length (just as P(X = a) = 

0 for a single point. 
 

Mean and variance of a discrete random 
variable 
 

Mean 
 
The mean or expected value of a random variable is defined as the weighted 
average of the possible values of , where the weights are the corresponding 𝑋
probabilities of each : 𝑋𝑖

 𝐸 𝑋( ) = µ = 𝑎𝑙𝑙 𝑥𝑖∑ 𝑥𝑖.  𝑝(𝑥𝑖)
Variance 
 
The variance of a random variable is the weighted average of the squared 
deviations of the possible values of X from the expected value , where the weights µ
are the corresponding probabilities: 

 𝐸 𝑋 − µ( )2( ) = σ2 = 𝑎𝑙𝑙 𝑥𝑖∑ 𝑥𝑖 − µ( )2.  𝑝(𝑥𝑖)
Shortcut calculation: 



 σ2 = 𝐸 𝑋2( ) − µ2 = 𝑎𝑙𝑙 𝑥𝑖∑ 𝑥𝑖2.  𝑝 𝑥𝑖( ) − µ2
The standard deviation is the square root of the variance 

 

Linear combinations 
 
When we create a new random variable as a linear combination of an existing 
random variable, we can determine how its expected value and variance are 
affected. Let:  

- X be a random variable  
- E(X) =   µ𝑋
- Variance X is:  σ2𝑋
- Y=aX+b: Y is a new random variable, constructed from X 

 
After the transformation the expected value of a random variable and the variance 
becomes: 

 𝐸(𝑌) = µ 𝑌 = µ 𝑎𝑋+𝑏 = 𝑎µ 𝑋 + 𝑏
 𝑉(𝑌) = σ 𝑌2 = σ 𝑎𝑋+𝑏2 = 𝑎 2σ 𝑋2

 

Rules for means 
 

1. If X is a random variable and  and  are fixed numbers: 𝑎 𝑏
 µ𝑎+𝑏𝑋 = 𝑎 + 𝑏µ𝑋

2. If X and Y are random variables: 
 µ𝑋+𝑌 = µ𝑋 + µ𝑌

 
Rules for variances 
 

- Two random variables, X and Y, are said to be independent if knowing the 
outcome of one variable provides no information about the outcome of the 
other. In other words, the occurrence of X does not influence Y, and vice versa 

- If two random variables are independent, their correlation coefficient  is (ρ)
zero, indicating no linear relationship between the variables. However, the 
reverse is not always true: a correlation coefficient  does not necessarily ρ = 0
imply independence. 



- Variance of the sum of two random variables X and Y: 
 

 
 

Discrete probability distributions 
 

 
 

Discrete uniform distribution 
 

- A discrete uniform distribution is one in which all possible outcomes of a 
random variable have the same probability of occurring. In other words, each 
event is equally likely. 

- Example: X is the number of eyes showing after a throw of a die. 
 
Bernoulli distribution 
 

- Two possible events: Success or Failure  
- Probability for success is , failure is  𝑝 1 − 𝑝
- Example: You do one multiple choice question with 5 options for each 

question. 
 



Binomial 
 

- A binomial experiment consists of n independent repetitions of a Bernoulli trial 
(an experiment with two outcomes: success or failure). 

- The probability of success, p, remains the same in each trial. 
- The random variable X represents the number of successes (k) out of n trials. 

 
-  Binomial with  and  𝑋 𝑛𝑥 𝑝
-  binomial with   and  𝑌 𝑛𝑦 𝑝
-  and  are independent 𝑋 𝑌
-  is Binomial distributed with parameters  and  𝑅 = 𝑋 + 𝑌 𝑛 = 𝑛𝑥 + 𝑛𝑦 𝑝

This property holds because The independence of X and Y ensures that the 
combined trials can be treated as a single larger set of independent trials with the 
same probability of success p. This allows the Binomial distribution to extend to their 
sum. 
 

Poisson 
 
Not all count data follows a Binomial distribution. The Binomial distribution requires a 
fixed number of trials (n), while the Poisson distribution models open-ended counts 
where the number of observations or trials is not fixed. 
 
The Poisson distribution is appropriate for modeling counts of events in scenarios 
with the following assumptions: 

1. The number of successes (events) occurring in a unit of measure is 
independent of the number of successes in other non-overlapping units. 

2. The probability of a success occurring in a unit of measure is constant for all 
units of equal size and is proportional to the size of the unit. 

3. The probability of two or more successes occurring in an extremely small unit 
approaches zero as the unit size decreases. 

If  is Poisson distributed with  ,  is Poisson distributed with  , and  and  are 𝑋 µ𝑋 𝑌 µ𝑌 𝑋 𝑌
independent. Then:  is Poisson distributed with  𝑆 = 𝑋 + 𝑌 µ𝑆 = µ𝑋 + µ𝑌
 



Key Quantity 
 
The Poisson distribution is defined by the mean number of successes per unit of 
measure (denoted as μ). 
 
For a Poisson random variable X, the probability of observing k successes is: 

 𝑃(𝑋 = 𝐾) = 𝑒−µµ𝑘𝑘!
 

Multiplication rule for independent events 
 

- Events A and B are independent if the occurrence of one does not affect the 
probability of the other.  

=>  𝑃 𝐴 𝑎𝑛𝑑 𝐵( ) = 𝑃 𝐴( ). 𝑃 𝐵( )
- If A and B are independent, the correlation between them is zero. 
- However, zero correlation does not necessarily imply independence, as 

non-linear associations might exist. 
 

Sampling distribution of a sample mean 
 

- A statistic calculated from a random sample will vary across samples drawn 
from the same population. 

- These sample statistics are treated as random variables. 
 
Law of large numbers 
The sample mean converges to the population mean as the sample size increases. 

- Population mean  must be finite. µ
- Respondents are independent and randomly drawn. 

 
Central Limit Theorem 
For a sufficiently large sample size n, the sampling distribution of the sample mean  

is approximately Normal, regardless of the shape of the original population 𝑥 
distribution: 

 𝑥 𝑖𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑁(µ,  σ𝑛 )
 
As n increases, the approximation improves. 
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General probability rules 
 

1.  for any event A 0≤𝑃 𝐴( )≤1
A probability of 0 means the event is impossible, and a probability of 1 means the 
event is certain. 

2. The probability of the sample space S, which includes all possible outcomes, is 
always:  𝑃 𝑆( ) = 1

3. Complement rules: the probability that an event A does not occur (its 
complement, denoted as  ) 𝐴𝑐
                                                             𝑃(𝐴𝑐) = 1 − 𝑃(𝐴)
The sum of probabilities for an event and its complement is always 1. 

4. Additional rule:  For two disjoint events A and B (events with no outcomes in 
common, meaning they cannot occur simultaneously) : 
                                                      𝑃 𝐴 𝑜𝑟 𝐵( ) = 𝑃 𝐴( ) + 𝑃(𝐵)
 

Venn diagram 
 
A Venn diagram is a visual tool to represent probabilities, the total area of the 
diagram represents the sample space (S), and individual regions within the diagram 
represent different events. 

- For two disjoint events: disjoint events are represented by non-overlapping 
areas. 
                                𝑃 𝐴 𝑜𝑟 𝐵( ) = 𝑃 𝐴( ) + 𝑃(𝐵)

- For two events that are not disjoint: non-disjoint events overlap in the Venn 
diagram. 
                              𝑃 𝐴 𝑜𝑟 𝐵( ) = 𝑃 𝐴( ) + 𝑃 𝐵( ) − 𝑃(𝐴 𝑎𝑛𝑑 𝐵)



 
 

Conditional probability 
 
Conditional probability describes the probability of event B occurring, given that 
event A has already occurred ( assuming . It is denoted as: 𝑃 𝐴( ) > 0)
 

 𝑃 𝐵|𝐴( ) = 𝑃(𝐴 𝑎𝑛𝑑 𝐵)𝑃(𝐴)
 

 adjusts the probability of B based on the knowledge that A has occurred. 𝑃 𝐵|𝐴( )
 
Example:  

 

 
Multiplication Rule: 
 
The joint probability of events A and B (i.e., both events occurring together) can be 
expressed in terms of conditional probability: 
                                           P(A and B)=  𝑃(𝐴). 𝑃(𝐵|𝐴)
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Bayes’s rule 
Bayes' rule allows us to update probabilities based on new evidence. It provides a 
method to calculate one conditional probability, such as P(B | A), when the reverse 
conditional probabilityP(A | B) is known, along with the individual probabilities of A 
and B. This makes it a powerful tool for refining predictions as new information 
becomes available. 

 
 

Decision theory 
 
Decision theory helps in making rational choices when faced with uncertainty. It 
often relies on probability concepts and visual tools such as tree diagrams to 
structure and analyze different possible outcomes. 
 

Probability: Conditional 
 
To represent probabilities in a structured way, we use tree diagrams. These diagrams 
help visualize different possible events, their probabilities, and how they relate to one 
another. 



 

Expected monetary value 
 

- When making decisions involving financial outcomes, we use the Expected 
Monetary Value (EMV) to determine the most beneficial choice.  

- EMV is calculated as: 
  Σ(𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒×𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

The decision that yields the highest EMV is typically considered the best choice. 
 

Example:  

Suppose we are deciding whether to buy an asset. The possible outcomes are: 

● "Good" scenario: Profit of $1,000 
● "Bad" scenario: Loss of $2,000 

The probabilities of these outcomes are: 

● P(Good) = 0.6 
● P(Bad) = 0.4 

 

Option 1: Buy the Asset 
 𝐸𝑀𝑉(𝑏𝑢𝑦) = (0. 6×1000) + (0. 4× − 2000)

 = 600 − 800 =− 200
 

Option 2: Do Not Buy the Asset 
 𝐸𝑀𝑉(𝑑𝑜 𝑛𝑜𝑡 𝑏𝑢𝑦) = 0



=>Since the EMV of buying (-200) is lower than not buying (0), the rational decision is 
not to buy the asset. 

Decision tree 
 

- A decision tree is a visual tool that helps evaluate different choices under 
uncertainty. It consists of decision nodes, chance nodes, and outcome nodes. 
The standard approach to solving a decision tree is to work backward (right to 
left), evaluating expected values at each step to determine the best course of 
action. The option with the highest EMV is usually selected. 

 
 

Probability tree 
 
A probability tree is different from a decision tree. While a decision tree is used to 
determine the best choice among alternatives, a probability tree helps in computing 
probabilities systematically. 

- Probability trees illustrate the sequence of events along with their conditional 
probabilities. 

- They allow us to calculate the joint probability distribution, which represents 
the likelihood of multiple events occurring together. 

- From the joint probability distribution, we can derive both marginal 
probabilities (probabilities of individual events) and conditional probabilities 
(probabilities given that another event has occurred). 

 



Example:  
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Introduction to inference 
 

Definition 
 
Statistical inference is the process of making conclusions about a population based 
on data gathered from a sample. The primary goal is to extend observations from a 
limited set of data points to a broader context, while accounting for inherent 
uncertainty and variability. This often involves examining the frequency or 
occurrence of certain events or successes, particularly when the data is collected 
from non-overlapping regions in space or time. 

Statistical inference uses probability theory to quantify and describe the natural 
variation that occurs within the data. It allows researchers to draw meaningful 
conclusions while recognizing that any data collected is subject to random 
fluctuations. In other words, formal inference employs probabilistic methods to 



assess the likelihood of various outcomes, ensuring that the conclusions are based 
on sound statistical reasoning and not simply random chance. 

 

Confidence interval 
 

- A confidence interval (CI) is a range of values that provides an estimate of 
where a population parameter is likely to fall, based on sample data. It reflects 
the uncertainty or variability inherent in the sample while offering a plausible 
range for the true value of the parameter. The interval is typically defined by 
adding and subtracting a margin of error from the sample estimate (denoted 
as X). 

- Mathematically, the confidence interval is expressed as: 
      [𝑋 − 𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟, 𝑋 + 𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟]

- The level of confidence associated with a confidence interval indicates the 
degree of certainty that the true population parameter lies within this range.  

- For instance, a 95% confidence interval suggests that if the same sampling 
method were used repeatedly, approximately 95% of the resulting intervals 
would contain the true population parameter. 
 

The sampling distribution of a sample mean 
 

- A statistic derived from a random sample can vary each time we take a new 
sample from the same population.  

- Sample statistics are considered random variables 
- The sample mean ( ) is a particularly important random variable. Although it 𝑋

will fluctuate from sample to sample and generally differs from the population 
mean ( ), it tends to provide a reasonable estimate of the true population µ
mean. 

 

Law of large numbers 
When independent observations are drawn randomly from a population with a finite 
mean, as the sample size increases, the sample mean ( ) becomes closer to the 𝑋
population mean ( ). µ
Conditions: 



1. The population mean ( ) must be finite. µ
2. The observations should be independent and randomly drawn. 

When data are normally distributed 
 
If the population follows a normal distribution , then the sample mean  of  𝑁(µ, σ) 𝑥 𝑛
independent observations will also follow a normal distribution , with a 𝑁(µ, σ/ 𝑛)
mean of  and a standard deviation of . µ σ/ 𝑛
 

Central limit theorem 
 
The Central Limit Theorem (CLT) states that when an Simple Random Sample (SRS) 
of size n is taken from any population with a finite mean and finite standard 
deviation, the sampling distribution of the sample mean  will approach a normal 𝑥
distribution as n increases. Specifically, regardless of the original population's 
distribution shape, the sample mean will be approximately normally distributed as: 

 is approximately  𝑥 𝑁(µ, σ𝑛 )
 

Confidence interval  
 
ー Confidence interval provides a range of values within which we expect the population 

parameter (such as the population mean) to lie, based on the sample data. 
ー To choose a margin of error, we use the approximate distribution of the 

sample mean. 

 
 



The most used margin of error is 5%. This gives a 95% confidence level. 
 
Particularly, if we take the interval , there is a 95% probability that the [µ − 2σ𝑛 , µ + 2σ𝑛 ]
sample mean considered is in that interval. In other words: 

 𝑃 µ − 2σ𝑛 ≤ 𝑋 ≤µ + 2σ𝑛( ) = 0. 95
 
Rearranging yields: 

 𝑃 𝑋 − 2σ𝑛  ≤ µ ≤ 𝑋 + 2σ𝑛( ) = 0. 95
 
This means that there is 95% confidence that  is in the interval .  µ  [𝑥 − 2σ𝑛 , 𝑥 + 2σ𝑛 ]
 
Example exercise: Standard deviation is 10 cm. The sample size is n= 400, and the 
observed sample mean is 182 cm. 

- Thus,  𝑥~𝑁(µ, σ𝑛 ) =  𝑁(µ, 10400 )
- An approximate 95% confidence interval for μ is [182 – 2*0.5, 182 + 2*0.5] = [181, 

183]. 
- If we were to take 100 samples and construct a confidence interval from each 

sample. Then, approximately 95 of the confidence intervals capture the true 
value of μ 

 

General way of obtaining the confidence intervals for 
the population mean 
 

1. Establish the confidence level  𝐶:
 
 
 
 

 
 
 
 
 

 
 
 



2. Pick a SRS of size with an unknown mean  and known standard deviation . 𝑛 µ σ
A level C confidence interval for  is: µ  𝐶 = 𝑥 ± 𝑧* σ𝑛

-  is the critical value with area C between  and  under standard Normal 𝑧* − 𝑧* 𝑧*
curve.  

- Margin of error is  𝑚 = 𝑧* σ𝑛
 
The interval is exact when the population distribution is normal and is approximately 
correct when  is large in other cases. 𝑛
 

Properties of a confidence interval 
 
The width of the interval is affected by the sample size n 

 
 
The width of the interval is affected by the confidence level C 

 
A confidence interval is usually affected by the following variables: 

- Sample Size (n): A larger sample size results in a narrower confidence interval, 
as more data provides more precise estimates of the population parameter. 

- Confidence Level (C): A higher confidence level means a wider interval 
because we are more certain that the interval will contain the true population 
parameter. 

- Critical Value (z*): The critical value represents the number of standard 
deviations away from the mean we need to account for a given confidence 
level. A higher critical value results in a wider interval. 

 
 
 



Choosing the sample size n 
 
When determining the appropriate sample size for a study, we consider both the 
desired confidence level and margin of error. The sample size n can be calculated 
using the following formula: 

 𝑛≥( 𝑧*σ𝑚 )2
Where: 

● n is the sample size. 
● z* is the critical value that corresponds to the desired confidence level (e.g., for 

a 95% confidence level, z* is approximately 1.96). 
● m is the standard deviation (or estimate of standard deviation if unknown) of 

the population. 
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Hypothesis testing 
 

Concepts 
 
Null hypothesis: – Typically conservative 

– Often a statement you aim to to disprove 
Alternative hypothesis: – Often the thing that you want to prove, backed by 

expected or observed evidence.  
– The key question is whether the evidence is strong 
enough to establish statistical significance. 

 

Hypotheses always relate to population parameters or a statistical model. 

Example: Seeing whether profit in the banking sector changed with respect to 
previous years. 

– Null hypothesis:   𝐻0:  µ = 0



– Alternative hypothesis:   𝐻𝑎:  µ ≠ 0
 
One-sided alternative: A parameter differs from its null value in a specific direction. 
Example:  𝐻𝑎:  µ > 0
 
Two-sided alternative: A parameter differs from its null value in either direction. 
Example:  𝐻𝑎:  µ≠0
 

Test-statistic 
 
- To test a certain hypothesis, we need a test-statistic. 
- A test statistic is a function of the sample that helps determine how likely the 

observed data is under the assumption that the null hypothesis (H₀) is true.   
- Formula:  𝑧 = 𝑥−µσ𝑛
 
P-value 
 
- The probability, computed assuming that  is true, that the test statistic would 𝐻0

make a value extreme or more extreme than observed is called the P-value of the 
test. 

- The smaller the P-value, the stronger evidence against  provided by the data. 𝐻0
 

Significance level  α
 
- The null hypothesis (H₀) is rejected if the P-value is smaller than a predefined 

significance level (α). 
- The significance level α must be chosen before conducting the test. 
- Common values for α include 0.10, 0.05, and 0.01, representing different levels of 

tolerance for Type I errors. 
 



 

 
 

Hypothesis testing advantages & disadvantages 
 
Advantage:  

– Provides a clear decision: Reject H₀ or Do not reject H₀. 

 
Disadvantage:  
– Statistical significance does not always imply practical significance..  
– A simple reject/do not reject outcome does not account for the strength of 
evidence against H₀.  
– Repeated testing with new samples increases the likelihood of eventually finding 
statistically significant results, even if no true effect exists (increasing the risk of false 
positives). 
 

Summary 
 



z test for a population mean 
To test the hypothesis  based on an SRS of size n from a 𝐻 0: µ = µ 0
population with unknown mean  and known standard deviation , µ σ
compute the one-sample z statistic 

 𝑧 = 𝑥−µ 0σ/ 𝑛
In terms of a variable Z having the standard Normal distribution the P-value for a test 
of  against: 𝐻 0

 
These P-values are exact if the population distribution is Normal and are 
approximately correct for large n in other cases. 
 
Hypothesis testing procedure 
 

1. Formulate hypotheses – Define the null hypothesis (H₀) and the alternative 
hypothesis (H₁). 

2. Calculate a test statistic – Compute a value based on the sample data. 
3. Evaluate the test statistic – Compare it to a threshold determined by the 

chosen significance level (α) to assess certainty. 
4. Draw a conclusion – Based on the comparison, either reject H₀ or fail to reject 

H₀, interpreting the results accordingly. 

 
Example 



 
A trash bag producer claims that he invented a new and stronger trash bag. The old 
bags of the producer have a breaking point of 50 pounds.  
We want to test the claim that the new bag is better. For this purpose, a sample of 40 
new bags are tested.  
The mean breaking weight of these 40 bags is 50.575.  
The standard deviation of the breaking weight is known to be 1.65.  
Perform the test using a significance level  = 5%. α
 
Solution: 

1. Formulate hypotheses (start with alternative): 
 𝐻 0: µ = 50
 𝐻 𝑎: µ > 50

 

2. Calculate test statistic:  𝑧 = 𝑋−µ 0( σ𝑛 ) = 50.575−50( 1.6540 ) = 2. 20
3. Calculate p-value:  P(Z>z)=P(Z>2.20)=0.0139 
4. Give conclusion in terms of original question: 

At a 5% confidence level we reject the null hypothesis. The new bags are 
better. 

 

Power of a test 
 

_ A crucial aspect of hypothesis testing is a test’s ability to reject the null 
hypothesis (H₀) when it is false. This ability is known as the power of the test. 

_ The power of a test is the probability that a significance test (at a fixed α level) 
correctly rejects H₀ when a specific alternative hypothesis is true. 

_ The power of a test depends on the true effect size and other factors, such as 
sample size and significance level. 

 
Type 1 and type 2 errors 
 

- Type I error: occurs when we reject H₀ when it is actually true (false positive) 
: is in the rejection region | is true)  α 𝑃(𝑋 𝐻0 

 



- Type II error: occurs when we fail to reject H₀ when it is actually false (false 
negative). 

P(  is not in the rejection region| is true) β:  𝑋  𝐻𝑎 
- Power of a test is the complement of the Type II error .  β

Power 1 –  = β
 

 
 

Confidence intervals and hypothesis testing 
 
A two-sided significance test of level  rejects a hypothesis :  exactly when α 𝐻0 µ = µ0
the value  falls outside a level  confidence interval for . µ0 1 − α µ
 
Power of a test continued 
 
To calculate the power, we need three things: 

1. The significance level  α
2. The rejection region of the test  

=> Reject when p-value .  <  α
=> Reject if  (two-sided test) or  𝑧| | > 𝑧*α/2 𝑧 > 𝑧*α

- The test statistic is:   
 𝑧 = 𝑋−µ0σ𝑛

For a one-sided test with rejection region , we get: 𝑧 > 𝑧*α



 
𝑋−µ0σ𝑛 > 𝑧* → 𝑋 >  µ0 + 𝑧*. σ𝑛

 
3. A specific value in the alternative hypothesis for which we calculate the power: 

If we have a specific true value  that corresponds with the alternative µ𝑎
hypothesis, we can calculate the probability of correctly rejecting null value 
given : µ𝑎

Power = P(reject |  true) = P( in rejection region |  ) µ𝑎 𝑋  µ = µ𝑎
Example: 

 𝑃(𝑋 >  µ0 + 𝑧*. σ𝑛 | µ = µ𝑎)
 
Inference for means 
If the variance is unknown, we use the t distribution:  𝑍 = 𝑥−µ𝑠𝑛
If  is unknown, we replace it by its estimator s.  σ
 
With degrees of freedom (how spread the distribution is compared to normal 𝑛 − 1 
distribution). 

                                               𝑠 = 𝑖=1
𝑛∑ (𝑥𝑖−𝑥)2

𝑛−1
which gives: 

                                             𝑡 = 𝑥−µ𝑠𝑛
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One-sample t test 
 

- A one sample t test is used when there is an unknown population mean 
 



Test statistic:  𝑡 = 𝑥−µ0𝑠/ 𝑛
 
C confidence interval:  𝑥 ± 𝑡* 𝑠𝑛
Margin of error:  𝑡* 𝑠𝑛
<!> In a one-sample t-test, to approximate p-values, we locate the critical value 
closest to the observed p-value and match it with the corresponding degrees of 
freedom (i.e., the nearest value in the appropriate row of Table D). 
 

Non-normality 
 
The t-statistic is valid only if the population follows a normal distribution. However, 
the test can still be used under the following conditions: 

- n is large enough ( ) 𝑛 > 100
- n is not too small ( ), but has no extreme skewness or outliers 20 < 𝑛 < 100
- n is small ( ), but the population is approximately normally distributed. 𝑛 < 20

 

Comparison of two groups 
 

Paired sample t-test 
 

A paired sample t-test is used when the same individuals or related subjects are 
measured twice under different conditions. The goal is to determine whether there is 
a significant difference between the two paired measurements. 

Procedure: 

1. Calculate the difference between the ratings for each individual in the panel.  
2. Construct a confidence interval (CI) for the difference, or perform a hypothesis 

test, to see whether the ratings differ significantly.  
 
Test statistic: 

 𝑡 = (𝐷−µ 𝐷)𝑆 𝐷/ 𝑛 ~𝑡 𝑛−1



<!> The variance is usually not equal to the sum of the two variances as the two 
samples are not independent.  
 
Sample variance of the difference:  

 

 𝑆 𝐷2 = 1𝑛−1 𝑖=1
𝑛∑ (𝐷 𝑖 − 𝐷) 2

Sign test 
 
Sign test: A test on the median.  

- Insensitive to outliers 
- Uses no distributional assumptions. 

For Matched pairs: Ignore pairs with difference 0; the number of trials n is the count of 
the remaining pairs. The test statistic is the count X of pairs with a positive difference. 
P-values for X are based on the Binomial B(n, 1/2) distribution. 
 

Normal approximation for binomial distribution 
 
When exact probabilities are not available in standard statistical tables, the normal 
approximation to the binomial distribution can be used to estimate probabilities 
more efficiently: 
Suppose that a count X has the Binomial distribution with n trials and success 
probability p. When n is large, the distribution of X is approximately Normal, N(np,

 ). 𝑛𝑝(1 − 0)
As a rule of thumb, we will use the Normal approximation when n and p satisfy np  10 ≥
and n(1 - p)  10. ≥
 

Summary of some important testing results 
 
If the population standard deviation is unknown, it should be replaced by the sample 
standard deviation (s), and the z-statistic is replaced by the t-statistic. 
 
Testing for a difference in means:  

● Paired samples:  
○ Normality: Differences are normally distributed, use t-test.  



○ Non-normal: Use a sign test. Consider sign of differences. If there is no 
difference, the number of plusses follows binomial distribution with 
p=0.5.  

 

Comparison of two groups: Independent samples 
 
When comparing two independent groups, the goal is to determine whether there is 
a significant difference between their means. 
Procedure: 

1. Calculate the mean ratings for the two groups 
2. Construct a confidence interval (CI) for the difference, or perform a test, to see 

whether the ratings differ significantly.  
3. Construct a test statistic using the separate sample statistics of the two 

samples: 
 
Suppose that is the mean of an SRS of size drawn from an N( ) 𝑥 1 𝑛 1 µ 1 , σ 1
population and that  is the mean of an independent SRS of size  drawn from an  𝑥 2  𝑛 2
N( ) population. Then the two-sample z statistic  µ 2 , σ 2

 𝑧 = (𝑥 1−𝑥 2)−(µ 1−µ 2)
σ 12𝑛 1 + σ 22𝑛 2

Has the standard normal N(0,1) sampling distribution. 
 
If n1 and n2 are sufficiently large, we can use:  

≈N(0,1) 𝑍 = 𝑋 1−𝑋 2𝑠 12𝑛 1 + 𝑠 22𝑛 2
With a small sample and both populations normally distributed: 

≈t(df)    𝑡 = 𝑋 1−𝑋 2𝑠 12𝑛 1 + 𝑠 22𝑛 2
 
The two-sample t confidence interval: 



Draw an SRS of size n from a Normal population with unknown mean  and an µ 1
independent SRS of size  from another Normal population with unknown mean . 𝑛 2 µ 2
The confidence interval for  given by  µ 1 − µ 2

 (𝑥 1 − 𝑥 2) ± 𝑡 * 𝑠 12𝑛 1 + 𝑠 22𝑛 2
has confidence level at least C no matter what the population standard deviations 
may be. The margin of error is 

 𝑡 * 𝑠 12𝑛 1 + 𝑠 22𝑛 2
Here, t* is the value for the t(k) density curve with area C between -t* and t*. The 
value of the degrees of freedom k is approximated by software or we use the smaller 
of n1 -1 and n2 -1. 
The two-sample t significance test: 
Draw an SRS of size n1 from a normal population with unknown mean and an µ 1
independent SRS of size  from another normal population with unknown mean . 𝑛 2 µ 2
To test the hypothesis  compute the two-sample t statistic 𝐻 0: µ 1 = µ 2 ,

 𝑡 = (𝑥 1−𝑥 2)−(µ 1−µ 2)
𝑠 12𝑛 1 + 𝑠 22𝑛 2

and use P-values or critical values for the t(k) distribution where the degrees of 
freedom k are either approximated by software or are the smaller of n1 -1 and n2 -1. 
 

Distribution of sum of normal variables  
 
Suppose we have to random variables  and  with: 𝑋 𝑌

 and  𝐸(𝑋) = µ 𝑥, 𝑉(𝑋) = σ 𝑋2 = σ 𝑋2𝑛 𝑥 𝐸(𝑌) = µ 𝑌, 𝑉(𝑌) = σ 𝑌2𝑛 𝑌
Then: 

 𝐸(𝑋 − 𝑌) = µ 𝑥 − µ 𝑦
If  are independent: 𝑋 𝑎𝑛𝑑 𝑌

 𝑉(𝑋 − 𝑌) = σ 𝑋2𝑛 𝑥 + σ 𝑦2𝑛 𝑦
If ~N(  , ) and If ~N(  , ):             ~N( ) 𝑋 µ 𝑥 σ 𝑋2𝑛 𝑥 𝑌 µ 𝑦 σ 𝑦2𝑛 𝑦 𝑋 − 𝑌 µ 𝑥 − µ 𝑦 , σ 𝑋2𝑛 𝑥 + σ 𝑦2𝑛 𝑦
 



T-test with pooled variance 
 
Sometimes it is reasonable to assume that both populations have the same 
variance, that means:  σ1 =  σ2 =  σ
Then: 

≈N(0,1) 𝑍 = 𝑋 1−𝑋 2σ 12𝑛 1 + σ 22𝑛 2
= 𝑋 1−𝑋 2σ 2( 1𝑛 1 + 1𝑛 2 )

 
Instead of separately estimating  and , we can use one estimator based on both σ1 σ2
samples: The pooled estimate : 𝑆𝑝2
 

 𝑆 𝑝2 = (𝑛 1−1)𝑆 12+(𝑛 2−1)𝑆 22𝑛 1+𝑛 2−2
Procedure 
 
Draw an SRS of size  from a normal population with unknown mean  and an 𝑛 1 µ 1
independent SRS of size  from another normal population with unknown mean . 𝑛 2 µ 2
Suppose that the two populations have the same unknown standard deviation. A 
level C confidence interval for  is: µ 1 −µ 2

 (𝑥 1 − 𝑥 2) ± 𝑡 * 𝑠 𝑝 1𝑛 1 + 1𝑛 2
Here  is the value for the t( ) density curve with area C between  𝑡 * 𝑛 1 + 𝑛 2 − 2 − 𝑡 *
and . 𝑡 *
 
To test the hypothesis  , compute the pooled two-sample t statistic: 𝐻 0: µ 1 =µ 2

 𝑡 = 𝑋 1−𝑋 2𝑠 𝑝 σ 12𝑛 1 + σ 22𝑛 2
 
And use P-values from the t( ) distribution. 𝑛 1 + 𝑛 2 − 2
 



Testing equality of variances - How to know whether it 
is pooled or not? 
 
The decision to use a pooled variance depends on whether the variances of the two 
groups are equal. If the variances are approximately equal, pooling provides a more 
precise estimate of variance. 
Before doing a t-test to test a difference in means, we first test whether variances 
differ:  

 𝐻 0: σ 12 = σ 22
   Pool if  cannot be rejected. 𝐻 1: σ 12 ≠ σ 22 𝐻 0

 
When   and  are simple variances from independent SRSs of sizes  and  𝑆 12 𝑆 22 𝑛 1 𝑛 2
drawn from Normal populations, the F statistic: 

 𝐹 = 𝑆 12𝑆 22
Has the F distribution with  and  degrees of freedom when :𝑛 1 − 1 𝑛 2 − 1 𝐻0 σ 1 = σ 2
is true. 

● If F is significantly greater than 1, it suggests that Group 1 has a larger variance 
than Group 2. 

● If F is significantly smaller than 1, it suggests the opposite. 
● If the true variances are equal: the two sample standard deviations tend to be 

similar and F will be close to one => deviations from 1 (in both directions) 
providing evidence for the alternative hypothesis. 

● Table E gives right tail critical values for the F-distribution. This is enough to 
also do a two-sided test. 

● To find the appropriate critical values be careful in assessing the degrees of 
freedom associated with the numerator and denominator. 

Note: 
1. Normality is crucial for this test 
2. The F-statistic is always positive since variances cannot be negative. 

 

Summary of some important testing results 
 
If  unknown, replace it by the sample statistic s. The z-statistic becomes a t statistic. σ
Testing for a difference in means: 



Paired samples: 
○   Normality: Differences are normally distributed, use t-test. 
○   Non-normal: Use a sign test. Consider sign of differences. If no difference, 

number of plusses follows binomial distribution with p=0.5 
Independent samples: 

○   First use the F-test to see if we can assume equal variances. Depending on the 
result of that test we choose or test: 
If we cannot reject the null hypothesis of equal variances: 

●   Equal variances: t-test with pooled variance 
If we can reject the null hypothesis of equal variances:  

● Different variances: Independent samples t-test 
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Proportions 
 
Choose an SRS of size n from a large population that contains population proportion 
p of "successes." Let be the sample proportion of successes, 𝑝 

 𝑝 = 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑛 = 𝑋𝑛
Then: 

● As the sample size increases, the sampling distribution of  becomes 𝑝
approximately normal. 

● The mean of the sampling distribution is p. 
● The standard deviation of the sampling distribution is 

 𝑝(1−𝑝)𝑛
 

Confidence interval for proportions 
 

● To make a confidence interval we need to know the variance.  



● This depends on the unknown parameter p and the sample size n.  
● As p is unknown, we approximate/estimate it: 

 𝑝 = 𝑋 = 𝑋𝑛
● To estimate the variance, we can use the following estimate:  

 σ 𝑝2 = 𝑝(1−𝑝)𝑛
 
The confidence interval can therefore be obtained using: 

 𝑝 ± 𝑧 * 𝑝(1−𝑝)𝑛
 
Obtaining an interval based on a specified width: 

 𝑀 = 𝑧 * 𝑝(1−𝑝)𝑛
 → 𝑛 ≥ 𝑧* 𝑝(1−𝑝)𝑀
 → 𝑛 ≥ 𝑧 *2 𝑝(1−𝑝)𝑀 2

Typically, we do not know the proportion. So, how can we find this value?  
– Use previous research  
– Use worst case scenario  
 
“Worst case scenario”: 
Choose n in such a way that the interval will always have the required maximum for 
all possible values for p : 

● We need to maximize  𝑝 − 𝑝2
● The maximum is attained when p=0.5 
● Therefore, the sample size can be chosen by using this ‘worst case scenario’: 

 𝑛 ≥ 𝑧 *2 𝑝(1−𝑝)𝑀 2 = 𝑧 *2 0.5(1−0.5)𝑀 2
 

Hypothesis testing 
 
Large-sample test 
 
Choose an SRS of size n from a large population with unknown proportion p of 
successes. To test the hypothesis : , compute the z statistic: 𝐻 0 𝑝 = 𝑝 0



 𝑧 = 𝑝−𝑝 0𝑝 0(1−𝑝 0)𝑛
In terms of a standard normal random variable Z, the approximate P-value for a test 
of  against 𝐻 0

 
Use this test when the expected number of successes np  and the expected 0
number of failures n(1- ) are both greater than 10. 𝑝 0
 
Requirements for the proposed test and interval:  
– A large sample: np and n(1-p) > 10.  
– A large population: This is to ensure that the observations are independent. 
 
Small-sample test 
 
– For a small sample, with a large population, we can consider the binomial 
distribution.  
– The number of successes follows a Binomial distribution Bin(n,p). 
 
Difference in proportions 
 
If the two are independent, it follows that the difference between the two proportions 
is also approximately Normally distributed. 
 



Sampling distribution of  𝑝 1 − 𝑝 2
 
Choose independent SRSs of sizes  and  from two populations with proportions 𝑛 1 𝑛 2

 and  of successes. Let D =  be the difference between the two sample 𝑝 1 𝑝 2 𝑝 1 − 𝑝 2
proportions of successes. Then: 

○   As both sample sizes increase, the sampling distribution of D becomes 
approximately Normal. 

○   The mean of the sampling distribution is . 𝑝 1 − 𝑝 2
○   The standard deviation of the sampling distribution is 

 σ 𝐷 = 𝑝 1(1−𝑝 1)𝑛 1 + 𝑝 2(1−𝑝 2)𝑛 2
 

 
 
confidence interval for the difference between two proportions: 

 𝑝 1 − 𝑝 2 ± 𝑧*α/2 𝑝 1(1−𝑝 1)𝑛 1 + 𝑝 2(1−𝑝 2)𝑛 2
 
Note: Use when the number of successes and the number of failures in each of the 
samples are at least 10. 



 
Significance test for comparing two proportions 
 
Choose an SRS of size  from a large population having proportion  of successes 𝑛 1 𝑝 1
and an independent SRS of size  from another population having proportion  of 𝑛 2 𝑝 2
successes. To test the hypothesis 

 𝐻 0: 𝑝 1 = 𝑝 2
compute the z statistic 

 𝑧 = 𝑝 1−𝑝 2𝑆𝐸 𝐷𝑝
where the pooled standard error is 

 𝑆𝐸 𝐷𝑝 = 𝑝(1 − 𝑝)( 1𝑛 1 + 1𝑛 2 )
based on the pooled estimate of the common proportion of successes, 

 𝑝 = 𝑋 1+𝑋 2𝑛 1+𝑛 2
In terms of a standard Normal random variable Z, the P-value for a test of  𝐻 0
against 

 
Use this test when the number of successes and the number of failures in each of the 
samples is at least 5. 



Reference list 
 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 1.1 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/99961285 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 1.2 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/99983220 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 2.1 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100033855 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 2.2 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100050816 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 3.1 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100083606 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 3.2 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100113880 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 4.1 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100153934 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 4.2 [Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100173922 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 5.1 [ Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100204365 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 6.1 [ Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100265395 
Van de Velden, M. (2025). Applied Statistics 1 Lecture 7.1 [ Lecture Slides]. Retrieved 

from:https://canvas.eur.nl/courses/47650/files/100316094 
 

https://canvas.eur.nl/courses/47650/files/99961285?module_item_id=1322558
https://canvas.eur.nl/courses/47650/files/99983220?module_item_id=1324474
https://canvas.eur.nl/courses/47650/files/100033855?module_item_id=1326689
https://canvas.eur.nl/courses/47650/files/100050816?module_item_id=1328285
https://canvas.eur.nl/courses/47650/files/100083606?module_item_id=1329627
https://canvas.eur.nl/courses/47650/files/100113880?module_item_id=1338066
https://canvas.eur.nl/courses/47650/files/100153934?module_item_id=1341113
https://canvas.eur.nl/courses/47650/files/100173922?module_item_id=1343222
https://canvas.eur.nl/courses/47650/files/100204365?module_item_id=1345159
https://canvas.eur.nl/courses/47650/files/100265395?module_item_id=1348859
https://canvas.eur.nl/courses/47650/files/100316094?module_item_id=1352712

	EFR summary 
	Details 
	Subject:  Applied Statistics 1 IBEB 2024-2025 
	Teacher: Michel van de Velden 
	Date of publication: 22.02.2025 

	 
	© This summary is intellectual property of the Economic Faculty association Rotterdam (EFR). All rights reserved. The content of this summary is not in any way a substitute for the lectures or any other study material. We cannot be held liable for any missing or wrong information. Erasmus School of Economics is not involved nor affiliated with the publication of this summary. For questions or comments contact summaries@efr.nl  
	Applied Statistics 1 - IBEB  
	Lecture 1 - Week 1 
	Introduction 
	Graphing the distribution of categorical variables 
	Graphing the distribution of quantitative variables 
	Statistical description of data 
	Central Tendency 
	Mean 
	Median 

	Spread 
	Boxplot 


	 
	Applied Statistics 1 - IBEB  
	Lecture 1.2 - Week 1 
	Density Curves 
	Definition 
	Normal Distribution 
	Assessing the normality of data 


	Scatterplots 
	Definition 
	Correlation 
	Covariance 
	Least-squares regression 



	Applied Statistics 1 - IBEB  
	Lecture 2.1 - Week 2 
	Least-squares regression: Residuals and Outliers 
	Cautions about correlation and regression 
	A comparison 
	Extrapolation 
	Lurking variables 
	Association ≠ Causation 
	Relations in categorical data 
	Simpson’s paradox 

	Producing data 
	Observation vs experiment 
	Confounding 
	Designing samples 

	Bias 
	Definition 
	Selection bias 
	Information (misclassification) bias 
	Confounding bias 


	 
	Applied Statistics 1 - IBEB  
	Lecture 2.2 - Week 2 
	Designing experiments 
	Definition 
	Comparative experiments 

	Overcoming the placebo effect 
	Basic principles for designing experiments 
	Assignment in experiments 
	Population & samples 


	Applied Statistics 1 - IBEB  
	Lecture 3.1 - Week 3 
	Randomness 
	Schematic way of looking at probability 
	Probability rules 
	Random variables 
	Probability models 

	Probability distributions 
	Continuous random variable 

	Mean and variance of a discrete random variable 
	Mean 
	Variance 
	Linear combinations 
	Rules for means 
	Rules for variances 
	Discrete uniform distribution 
	Bernoulli distribution 
	Binomial 
	Poisson 
	Key Quantity 

	Multiplication rule for independent events 

	Sampling distribution of a sample mean 

	 
	Applied Statistics 1 - IBEB - Lecture 3.2 - Week 3 
	General probability rules 
	Venn diagram 
	Conditional probability 
	Multiplication Rule: 


	 
	Applied Statistics 1 - IBEB - Lecture 4.1 - Week 4 
	Bayes’s rule 
	Decision theory 
	Probability: Conditional 
	Expected monetary value 
	Option 1: Buy the Asset 
	Option 2: Do Not Buy the Asset 

	Decision tree 
	Probability tree 


	 
	Applied Statistics 1 - IBEB - Lecture 4.2 - Week 4 
	Introduction to inference 
	Definition 
	 
	Confidence interval 

	The sampling distribution of a sample mean 
	Law of large numbers 
	Conditions: 

	Central limit theorem 
	Confidence interval  
	General way of obtaining the confidence intervals for the population mean 
	Properties of a confidence interval 
	Choosing the sample size n 

	 
	Applied Statistics 1 - IBEB - Lecture 5 - Week 5 
	Hypothesis testing 
	Concepts 
	Test-statistic 
	P-value 
	Significance level α 
	Hypothesis testing advantages & disadvantages 
	Summary 
	Hypothesis testing procedure 
	Example 
	Power of a test 
	 
	Type 1 and type 2 errors 
	Confidence intervals and hypothesis testing 
	 
	Power of a test continued 
	Inference for means 


	 
	Applied Statistics 1 - IBEB - Lecture 6 - Week 6 
	One-sample t test 
	Non-normality 
	Comparison of two groups 
	Paired sample t-test 
	Sign test 
	Normal approximation for binomial distribution 
	 
	Comparison of two groups: Independent samples 
	 
	Distribution of sum of normal variables  
	T-test with pooled variance 
	Testing equality of variances - How to know whether it is pooled or not? 


	 
	Applied Statistics 1 - IBEB - Lecture 7 - Week 7 
	Proportions 
	Confidence interval for proportions 
	Hypothesis testing 
	Large-sample test 
	Small-sample test 
	Difference in proportions 
	 
	Significance test for comparing two proportions 



	Reference list 

