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Applied microeconometrics -
Module 1 – Linear regression
analysis
Lecture 1 – Introduction to the linear
regression model
EMPIRICAL ANALYSIS฀ It is a scientific methodology where we use the data to test a
theory and to estimate relationships between variables.

First, we have to define our research question. They can come from:
● Existing economic models.
● Via intuitive and less formal reasoning (something that inspires us to be

studied from an economic point of view and with a scientific method).

SIMPLE REGRESSION MODEL฀ It is a model that tells us somehow how a variable
defines another one.
We have two variables, y and x, and we:
฀ want to explain y in terms of x
฀ want to know how y varies with changes in x

Example: how does the crime rate (y) change with changing the number of police
officers (x) in a city?

Main example: HOUSE PRICES AND AVERAGE INCOME IN A NEIGHBOURHOOD1

(Garcia-Gomez, 2022)
We could study these variables to know what policies are incrementing.



Figure n. 12 (Garcia-Gomez, 2022)

We can observe that there is a positive association between wages and house prices
(higher the income, higher the house price).
The aim of the linear regression model is to find a line that can summarize all the
information given by the scatter plots, to show the predicted value of the average
house price as a function of the average income per capita.

The line’s formula is: 𝑦 =  β̂0 +  β̂1𝑥
Figure n. 23 (Garcia-Gomez, 2022)



is the intercept (it is the house price when income = 0, which in this case is notβ̂0
very indicative).

is the slope (it tells us how house prices change when income does it as well).β̂1
simple regression model

𝑦 =  β0 +  β1𝑥 + 𝑢
● y is the dependent variable.
● x is the independent or explanatory variable.
● u is the error term or disturbance (also referred as the “unobserved”).

u it is all that is unobserved by the researchers that has an impact on the dependent
variable (in our example, everything else that affect house prices in a
neighbourhood, e.g., the number of amenities present in a neighbourhood).

ceteris paribus condition

We are interested into knowing how the dependent variable changes when the x
changes, holding all other variables fixed.
If the factors in u are held fixed ฀ ∆𝑢 = 0
So ฀ ฀ this is the interpretation of a SLOPE in our linear regression model.∆𝑦 =  β1∆𝑥
zero conditional mean assumption

฀ The unobserved (u) does not change when x changes in term of expected values.
฀ 𝐸 𝑥( ) = 𝐸 𝑢( ) = 0
This makes possible to see the line of the linear regression model in terms of
EXPECTATIONS (what is the expected value of y with a given value of x)𝐸 𝑥( ) =  β0 + β1𝑥
Does the ceteris paribus condition works with our example?

It depends if the zero conditional mean assumption holds.



For example: u contains the quantity and quality of amenities in a neighbourhood.
● If we assume that the number of amenities does not change given the

average income in a neighbourhood, then we have ฀ the zero∆𝑢 = 0
conditional mean assumption holds.

● If the number of amenities varies depending on the wealth of the
neighbourhoods, then the zero conditional mean assumption does not hold up
฀ we cannot draw ceteris paribus conclusions.

Lecture 2 - Estimation and interpretation in
the linear regression model

ORDINARY LEAST SQUARE ESTIMATES

Figure n. 34 (Garcia-Gomez, 2022)

We want an estimate of and and we will use the ordinary least squareβ0 β1
estimates.

1. In the population we expect that y and x are related in a linear way.
฀ ฀ this is a random sample of the population of interest.𝑦𝑖 = β0 + β1𝑥𝑖 + 𝑢𝑖
We will never know exactly and , but we want a good estimate of those.β0 β1
First, we draw a random sample from the population, and for every individual
in the random sample we can plot the value for x and y (see the figure n. 3).
Given the values for x and y, we draw a fitted line, similar as before.



FITTED VALUE ( ): is the value that, for a given , falls on the fitted line.𝑦𝑖 𝑥𝑖
We see that there is still a difference between the observed value and the
value on the fitted line: the difference is called the RESIDUAL .𝑢𝑖
The fitted value is just a predicted value: 𝑦𝑖 = β̂0 +  β̂1𝑥𝑖 
The residual is: ฀𝑢𝑖 = 𝑦𝑖 − 𝑦𝑖 = 𝑦𝑖 − β̂0 − β̂1𝑥𝑖 𝑢𝑖 = 𝑦𝑖 − β̂0 − β̂1𝑥𝑖
Our aim is to have the residuals as small as possible to have the best possible
fit.

2. We then obtain the estimates of and by minimizing the square of theβ̂0 β̂1
residuals:

𝑚𝑖𝑛β̂0,β̂1 𝑖=1
𝑛∑ 𝑦𝑖 − β̂ 0 − β̂1𝑥𝑖( )2 

This is what the ordinary least square estimator does to obtain the estimates.
The ordinary least square estimator is the most efficient and biased estimator.
To calculate these values, we must use STATA.

With STATA we obtain an equation with which we can draw the fitted line.

MULTIPLE REGRESSION MODEL

It is more difficult to draw ceteris paribus conclusions with this model. For example,
house prices are also related to the population density of an area:ℎ𝑜𝑢𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 =  β0 +  β1𝑖𝑛𝑐𝑜𝑚𝑒 +  β2𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑢
And before we had: ℎ𝑜𝑢𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 =  β0 +  β1𝑖𝑛𝑐𝑜𝑚𝑒 + 𝑢
We remember that we can draw ceteris paribus conclusions if the unobserved is not
correlated to the explanatory variable. Now we have to see if the population density
is correlated to income: richer householders are more likely to live in less populated
areas? If yes, the zero conditional mean assumption could not be satisfied ฀ there
would not be any ceteris paribus conclusions and would be better to estimate the
simple regression model.

Everything we have seen so far also applies to the multiple regression model:



𝑦 =  β0 + β1𝑥1 + β2𝑥2 + 𝑢
Multiple regression analysis allows us to control for many other factors that
simultaneously affect the dependent variable.
In addition, controlling for more variables also allows us to have better predictions.

Lecture 3 – OLS assumptions – unbiasedness
UNBIASEDNESS: With the concept of “unbiasedness” we mean that the expected
value of our estimated parameter is equal to the population parameter.

𝐸 β̂0( ) = β0
𝐸 β̂1( ) = β1

Please note that the hat is used for estimated values and anything without the hat is
used to indicate population’s values.

We need four assumptions for this property:
1. (MLR1) The model must be linear in parameters.
2. (MLR2) We must have random sampling.
3. (MLR3) There cannot be perfect collinearity.
4. (MLR4) The zero conditional mean assumption must be satisfied ( ).𝐸 𝑥( ) = 0

1. LINEARITY IN PARAMETERS ASSUMPTION

We have the population model. In this model we have the variable x (independent
variable) and y (dependent variable). y is related to x and the error u via the
following equation:

𝑦 = β0 + β1𝑥 + 𝑢
All the parameters are linearly related.



Important: the assumption is about the linearity in the parameters. So, the linearity is
not possible in cases like this:

𝑦 = β0 + β1𝑥1 + β1β2𝑥2 + 𝑢
฀ Interaction term between and ฀ not possible!β1β2 β1 β2

However, there can be nonlinearities in the variables:

(Example of quadratic variable)𝑦 = β0 + β1 ln 𝑙𝑛 𝑥1( ) + β2𝑥2 + β3𝑥22 + 𝑢
(Example of logarithmic variable)ln 𝑙𝑛 𝑦( ) = β0 + β1𝑥1 + β2𝑥2 + β3𝑥22 + 𝑢

In these cases, we need to change our interpretation of the variables, and we are
going to see a few more examples later on.

2. RANDOM SAMPLING ASSUMPTION

For this assumption to be true, we need to pick a random sample of size n, following
the population model. If, for whatever reason, the sample will not be picked
randomly, we will incur in selection bias.

3. NO PERFECT COLLINEARITY ASSUMPTION

If we pick a sample, in the following sample (and so in the population):
● Among all the independent variables, none of them should be constant, so

that we have variation in all the independent variables. This is important
because we use the variation to estimate the effect of our variable x on our
variable y.

● There cannot be any exact linear relationship between the independent
variables considered.

Example of perfect collinearity:
Given the model:

ℎ𝑜𝑢𝑠𝑒𝑝𝑟𝑖𝑐𝑒 = β0 + β1𝑖𝑛𝑐𝑜𝑚𝑒 + β2𝑅𝑜𝑡𝑡𝑒𝑟𝑑𝑎𝑚 + β3𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + β4𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑦𝑜𝑢𝑛𝑔𝑠 +  β5𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑙𝑑𝑒𝑟𝑙𝑦 +



Avoiding perfect collinearity means that among the independent variables there is
not any exact linear relationship.
But if we assume that all and only the elderly people lived in Rotterdam (Rotterdam =
perc_elderly), these two variables would suffer the same kind of variation, and
therefore the relationship between them would be perfectly linear.
In general, there is perfect collinearity between , and if can be expressed as𝑥1 𝑥2 𝑥3 𝑥3
a combination of the other two variables ( ).𝑥3 = 𝑎𝑥1 + 𝑏𝑥2
We can have two types of collinearity:

● PERFECT COLLINEARITY: in these cases, the estimation will not be successful (it
could be that some software will not execute the commands given or will give
inappropriate results). STATA tries to resolve the problem arbitrarily dropping
the faulty variable in order to estimate a model without this problem; the
problem is that it could drop one of the variables of most interest in our model.
Therefore, we should first clearly and properly define our model in order to
avoid any problem of this sort.

● IMPERFECT COLLINEARITY: when we estimate the model, the estimation works,
but we get imprecise values for the estimates. We must watch out for:

o x’s with high correlation between them.
o Imperfect collinearity between variables, for example between and .𝑥1 𝑥2

This can happen when we find big F-stat, when jointly significant,𝑥1, 𝑥2
but small T-statistics.

4. ZERO CONDITIONAL MEAN ASSUMPTION

Will be discussed later when talking about exogeneity.

Lecture 4 – Linear regression analysis: OLS
assumptions – inference

INFERENCE – HYPOTHESIS TESTING

We want to test hypothesis about a parameter, or a group of parameters, in the
population. We need not only information about the property of the estimator, so the



expected value of the estimator, but also about his distribution (related to the
distribution of the errors).
So, the following assumptions are related to the distribution of the errors:

● MLR5 – Homoskedasticity
● MLR6 – Normality

Under assumptions 1-6 OLS estimator is the unbiased estimator with minimum
variance.

5. HOMOSKEDASTICITY ASSUMPTION

The variance of the error term does not change regardless of the values assumed by
the independent variables: 𝑣𝑎𝑟 𝑥1𝑥2( ) = 𝑣𝑎𝑟 𝑢( ) =  σ2

● For every individual the error term has the same importance, despite of the
characteristics.

● The outcome of y has the same magnitude of uncertainty for every level of x’s.

Figure n. 45 (Garcia-Gomez, 2022)

In this case, the Figure A has homoskedastic residuals, while in Figure B we can see
that the variance of the residuals grows with x.

If this assumption does not hold, we have a condition called heteroskedasticity:
or or𝑣𝑎𝑟 𝑥1𝑥2( ) = 𝑓(𝑥1, 𝑥2) 𝑓(𝑥1) 𝑓(𝑥2)



When we have heteroskedasticity:
● OLS estimates are still unbiased and inefficient.β̂
● OLS standard errors for the estimators are incorrect.𝑠𝑒(β̂)

This is a problem for inference, but it is not a big issue since with STATA we can easily
adjust the SE and the statistics used for inference.
฀ ALWAYS use heteroskedasticity-robust standard errors.

6. NORMALITY ASSUMPTION

This assumption implies that the population error u is independent of the explanatory
variables and follows the distribution .𝑥1, 𝑥2, …,  𝑥𝑘 𝑢~𝑁𝑜𝑟𝑚𝑎𝑙 (0,  σ2)
This implies that if we could draw many samples of size n and estimate linear
regression model by OLS with each of these samples plotting the estimated thatβ̂1
we get in every case, those follow a normal distribution centred at .β1

Figure n. 56 (Garcia-Gomez, 2022)

With large samples always approximately follows a normal distribution centered inβ̂1
, so even if u does not follow a normal distribution, OLS estimator is asymptoticallyβ1

normally distributed (i.e., approximately normally distributed in large samples).
฀ When we have large sample sizes, we can always carry on using the
standard tests for hypothesis testing (only IF we have them).

On the other hand, if the sample is small and we have non-normal errors, we need to
worry about the normality assumption.

TO SUM UP:



● We need the first 4 assumption (MLR1-MLR4) to obtain unbiased estimates of
the population parameters.

● The fifth and sixth assumptions (MLR5-MLR6) are important for inference, but
we may face some problems with them. Anyway:

o Even if assumption MLR5 is not satisfied, standard errors and test can be
easily adjusted.

o When our samples are large, the non-normality of the errors is not an
issue.

Said that, now we have all the components for hypothesis testing.

Lecture 5 – Linear regression analysis:
inference I. – single population parameter
We have seen in our main example using STATA that with an increase of €1.000
derives an increase of €16.000 in the average house price of the neighbourhood,
ceteris paribus.
Is this effect different from 0? 16 should be far enough from 0.
But what about 15? Is it far enough from 16?

Those questions are hypothesis, which we could test comparing how different our
estimates coefficient is to the number we want to test (0 or 15). We are going to see
how different it is with a statistical tool/testing.

INFERENCE

First, we are going to test a hypothesis (the null hypothesis ) for a single population𝐻0
parameter .𝐻0: β𝑗 = β0
To test this hypothesis (that the population parameter is equal to 0 or 15) we
compute a t-statistic:

𝑡 = β̂𝑗−β0𝑠𝑒(β̂𝑗) ~𝑡𝑛−𝑘−1



The t-statistic is computed comparing the estimated population parameters minus
the value that we want to test divided by the estimated standard error. The standard
error gives us an idea of the level of precision of our estimate, and this is related to
the fact that we have a random sample of the population.
Under the null hypothesis we know that this number is distributed following a
t-distribution in which n is the number of observation and k is the number of
explanatory variables.
The distribution looks like the following figure below.

Figure n. 67 (Garcia-Gomez, 2022)

The idea is that under the null hypothesis the t-statistic is going to be very close to 0.
The more we go away from 0 the more we go towards the tails of the distribution, the
less likely it is that our null hypothesis is true.

How further away are we going to accept a number, in order not to reject our null
hypothesis?
We need to set a significance level ( ), which is the tolerance for a type I error: it isα
the probability of rejecting the null hypothesis given that it is true. The most common
values for the significance level are 0.10, 0.05 and 0.01. For example, having aα
significance level of 5% means if the null hypothesis was true then only 5% of the
random samples would provide an estimate in the area of the tail of the distribution,
0.025 on the left and 0.025 on the right. If our estimated value falls in these areas, it is
very unlikely that our null hypothesis is true, therefore we reject it. We will never be
certain, so we base this in this probability that it is less likely that it could happen.
We reject the null hypothesis if the absolute value of the t-statistic is larger than the
critical value c for our significance level (1.96 for a 0.05 significance level):𝑡| | > 𝑐



We often use the p-value: which tells us what is the largest significance level at
which we could carry out the test and still fail to reject the null hypothesis8

(Garcia-Gomez, 2022). We reject the hypothesis if:𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  α
The p-value gives us the probability that we have left on the tails given our
t-statistic9 (Garcia-Gomez, 2022).

CONFIDENCE INTERVALS

To avoid having only a point estimate, we use confidence intervals, which provide us
a range of likely values for the population parameter.
We know that: β̂𝑗−β0𝑠𝑒(β̂𝑗) ~𝑡𝑛−𝑘−1
Looking at the graph above, we can ask ourselves what the value of thatβ
corresponds to -c and c is.
We know that testing the null hypothesis for any of those values we could not reject
them because they fall within the area in the centre of the distribution (the 95% of it).
We can use this formula, where we add and subtract at the estimated parameter the
value c (the critical value in the distribution) times the standard error we estimated
for our :β β̂𝑗 𝑐 𝑠𝑒(β̂𝑗)
Interpretation of the confidence intervals
Important: we are not 95% sure that the real value is in this interval, because, in fact,
we are not, but it means that:

● From all the possible samples that we can possibly draw, in 95% of the cases
the true value of the coefficient will be inside the interval.
We just hope that our random sample is one of those containing the real
value.

● Using a two-sided hypothesis, it gives us the set of all values that cannot be
rejected (in this case at 5%) (the values that are in the centre of the
t-distribution between -c and c).

● Again, this is NOT equivalent to the probability of 95% of having the real value
inside this exact interval.



Lecture 6 – Inference II

Testing multiple restrictions: multiple hypotheses test or
joint hypotheses test

● We are interested to see if a group of variables has no effect on the
dependent variable. So, we are going to test this.
For example, are the house prices affected by the demographic structure?ℎ𝑜𝑢𝑠𝑒𝑝𝑟𝑖𝑐𝑒 =  β0 + β1𝑖𝑛𝑐𝑜𝑚𝑒 + β2𝑝𝑒𝑟𝑐𝑦𝑜𝑢𝑛𝑔 + β3 + 𝑝𝑒𝑟𝑐_𝑒𝑙𝑑𝑒𝑟𝑙𝑦 + 𝑢

We have multiple explanatory variables:
Our null hypothesis is that is equal to 0 as well as :β2 β3

● ฀ if true, the demographic structure will not have an effect in𝐻0: β2 = 0,    β3 = 0
houses prices.
We have two restrictions: if is true, then this group of variables has no effect𝐻0
on house prices after we controlled for the income per capita.

● is not true ฀ AT LEAST ONE of the coefficients is different than 0, or either𝐻1: 𝐻0
one of them, but is sufficient that only one of the coefficients is different than 0.

To test these hypotheses, we define an F-statistic in which the null hypothesis is𝐻0
that the two coefficients are equal to 0; the alternative hypothesis is .𝐻1

● ;𝐻0:  β1 = 0,   β2 = 0
● 𝐻1:  β1≠0 𝑎𝑛𝑑/𝑜𝑟  β2≠0

𝐹 = 12 𝑡12+𝑡22−2𝑝𝑡1𝑡2𝑡1𝑡21− 𝑝𝑡1,𝑡2
2⎛⎝ ⎞⎠

Note that this formula is robust to heteroskedasticity errors.

● is the t-statistic of test𝑡1 β1 = 0
● is the t-statistic of test𝑡2 β2 = 0
● is the estimator of the correlation between these two t-statistics.𝑝

Once completed we know that the F-statistic in large samples follows an F
distribution.



𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ~𝐹𝑞, ∞
(q is the number of restrictions; infinity refers to the fact that we use a very large
sample)

As usual, we reject the null hypothesis if F is large in statistical terms. If F > critical
value of we reject the hypothesis.𝐹𝑞, ∞

● At 10% the critical value could be 2.30.
● At 5% the critical value could be 3.00.
● At 1% the critical value could be 4.61.

We test these hypotheses with STATA.
With STATA we see that the F value is 568,95 (a lot more than 2.30), therefore we
reject the null hypothesis.
In alternative we can look at the p-value, which in this case is smaller than the 5%
significance level, and we get to the same conclusion.

We can use the same procedure to test a linear combination of the parameters:
฀ test command in STATA after running the regression𝐻0: β2 =  β3;   𝐻0:  β2 − β3 = 0

model.

When is not rejected, we must say that: WE FAIL TO REJECT AT THE x%𝐻0 𝐻0
SIGNIFICANCE LEVEL

We cannot say that is accepted at the x% significance level, but only that it is not𝐻0
rejected because it can assume different values.

Lecture 7 – Interpretation and categorical
variables
CATEGORICAL VARIABLES: variables that contains qualitative information (for
example, the variable “religion” is a categorical variable).

BINARY/DUMMY VARIABLES: categorical variables that can only take two categories.



For example, we could ask ourselves if, ceteris paribus, house prices in Rotterdam
would be different from the rest of the Netherlands. In order to do so, we can create
one of these two variables:

● Variable Rotterdam (it assumes the value 1 if the neighbourhood is in
Rotterdam, 0 if in other parts).

● Variable Other (1 if in other parts, 0 if in Rotterdam).

And we can estimate this model:𝐻𝑜𝑢𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 =  β0 + β1𝑖𝑛𝑐𝑜𝑚𝑒 + β3𝑅𝑜𝑡𝑡𝑒𝑟𝑑𝑎𝑚 + 𝑢
Or, alternatively, this other model:𝐻𝑜𝑢𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 =  β0 + β1𝑖𝑛𝑐𝑜𝑚𝑒 + β4𝑜𝑡ℎ𝑒𝑟 + 𝑢
The coefficient is representing the effect on the average house price of being inβ3
Rotterdam compared to other regions, ceteris paribus.

We cannot include both “Rotterdam” and “other” in the same equation because
there is perfect collinearity between them, since every time “Rotterdam” is 1 “other” is
0, and vice versa ฀ there is no separate variation in one variable compared to the
other.
If we add “Rotterdam” and “other” in the same equation, the sum will always be 1,
which is the same as the constant.

Figure n. 710 (Garcia-Gomez, 2022)



In STATA we can choose a model or the other: the conclusions will be the same, even
if we get different coefficients for each equation, and that’s because the constant is
giving us different values in each of the models (in the first model it tells us the
expected house price for neighbourhoods not in Rotterdam, while in the second it
tells us the expected house price for neighbourhoods in Rotterdam).
We then can look at the predictions. We have 2 lines of dots which tell us how house
prices change when income does in a neighbourhood that is in Rotterdam (one line)
and for a neighbourhood which is in another region (the other line).

Which one is the highest and which one is the lowest? We could look at what is the
expected value as we did in the previous passage ฀ this will give us the line with the
lowest intercept.

Are they parallel? It seems like they are. It is because we assume that an income
variation has the same effect in Rotterdam as well as in any other region ฀ the slope
is always the same.

Sometimes the categorical variable has more than two categories.

It is important that all the categories contained in the variable could be interpreted in
a quantitative way, and we create a dummy variable (the variable with two
variables) for each of the categories.
But if we have, for example, four categories, we cannot include all of them in the
same equation because of the collinearity. Therefore, we use three categorical
variables in one equation and take the one we left behind as the reference category.
Once set the reference category, we must interpret the coefficients of the included
dummy variables compared to the reference category. When interpreting the
intercept, we also need to consider it compared to the excluded variable and
remember that the intercept is the value our model assumes when the INCLUDED
explanatory variables are equal to zero, but not the reference category.

We interpret the coefficients compared to the reference category because if we
changed it, the estimated coefficients would also change.



Lecture 8 – Model selection in linear
regression analysis
What could be the variables to include in a model?
We should begin with a (theoretical) framework:
We could, for example, examine the probability of committing a crime: Gary S. Becker
elaborated in 1968 an economic model in order to describe the grade of
participation in a crime by an individual.
The individual participation in a crime (our dependent variable y) could be
described by the following variables: the hourly “wage” obtained through a criminal
activity ( ), the hourly wage obtained with a legal job ( ), other income ( ), the𝑥1 𝑥2 𝑥3
probability of getting caught ( ), the probability of being convicted if caught ( ),𝑥4 𝑥5
the expected sentence if convicted ( ), the individual’s age ( ).𝑥6 𝑥7
After choosing a model framework and having seen the data, it is possible to see
which variable are available. If we cannot observe some of them, they will be part of
the unobserved.

We must not start with bivariate associations, because it could be that the , if theβ
zero conditional mean assumption is not satisfied, is biased.
So, we could choose a variable from a bivariate association, but it is going to be
biased in most of the cases.

What is the point of the analysis?
There are two possible alternatives:

1. The aim could be having the best predictive model. In this case we can use
goodness of fit measures.

2. If the aim is to estimate the causal effect of x on y, the goodness of fit
measures will not be informative: in this case it is needed to control for
sufficient confounders to satisfy the zero conditional mean assumption.

First, we analyse the case where our aim is to have the best predictive models. As we
said, we can use goodness of fit variables.
These variables are useful to know how well our model fits the data, which means
how much of the overall of the dependent variable could be explained by our
independent variables.
The standard measures of goodness of fit are the following:



● 𝑅2
● Adjusted 𝑅2
● Overall F-test

R2 𝑅2 = 𝑆𝑆𝐸𝑆𝑆𝑇 =  1 − 𝑆𝑆𝑅𝑆𝑆𝑇
Where:

TOTAL SUM OF SQUARE: 𝑆𝑆𝑇 =  𝑖=1
𝑁∑ 𝑦𝑖 − 𝑦𝑖( )2

EXPLAINED SUM OF SQUARES: 𝑆𝑆𝐸 = 𝑖=1
𝑁∑ 𝑦𝑖 − 𝑦𝑖( )2

SUM OF SQUARED RESIDUALS (UNEXPLAINED VARIATION): 𝑆𝑆𝑅 𝑖=1
𝑁∑ 𝑢𝑖2

captures how much of the total variation (which is the total sum of the square), is𝑅2
explained by our model.

We can define it in two ways, either as the ratio of the explained sum of the squares
divided by the total sum of the squares, or as 1 minus the sum of the square of the
residuals (that is the unexplained variation) divided by the total variation.
This number is going to be between 0 and 1 and the closest it is to 1, the highest the
share of the variation that our model explains.
Our problem with this measure is that it always increases with the inclusion of
variables in the model: every time we add one explanatory variable, even if it
explains very little, is going to cause the R-squared to increase.

ADJUSTED R2

Our aim is to have a model which is both simple and complete: we want to control
for sufficient x’s, but at the same time we should not overdo the model, therefore we
should add variables to the point they provide a sufficient contribution in our
predictions.

(adjusted ) corrects the increase we discussed above by penalising for the𝑅2 𝑅2
number of coefficients: if we add a new variable with a |t-stat|>1 or, in the case of a
set of added variables, F-stat>1, it increases.



OVERALL F-TEST

Another useful measure is the overall F test: with this measure we can check whether
the joint hypothesis that the coefficients of all our variables is equal to zero,
compared to the alternative that at least one is different than 0. This is exactly the
same F-test we have seen in the second inference lecture, even if in that case we
used it for all the variables.

The unrestricted is the model that includes as many restrictions as explanatory
variables in our model. This tells us whether our model explains anything at all, so at
least one of the variables is statistically significant.

Overall F test of vs : at least one with𝐻0:  β1 = … =  β𝑘 = 0 𝐻1 β𝑗≠0 𝑗 = 1, …, 𝑘
● Unrestricted model (UR): 𝑦 =  β0 +  β1𝑥1 +  β2𝑥2 + … +  β𝑘 𝑥𝑘 + 𝑢
● Restricted model (R): (with k restrictions)𝑦 =  β0 + 𝑢

We can do this for all the variables as well as for sub-groups of variables:
F test: vs : at least one with𝐻0:  β1 = … =  β𝑞 = 0 𝐻1 β𝑗≠0 𝑗 = 1, …, 𝑞

● Unrestricted model (UR): 𝑦 =  β0 +  β1 𝑥1 +  β2 𝑥2 + … +  β𝑘 𝑥𝑘 + 𝑢
● Restricted model (R): (with q𝑦 =  β0 +  β𝑞 + 1 𝑥𝑞 + 1 + … +  β𝑘 𝑥𝑘 +  𝑢

restrictions)

This is going to add information if those variables are jointly significant. We can test
for this using an F-test in which we test this sub-group of variables. This is also a way
of deciding whether we want to keep those variables in the model or not. Because if
they are jointly statistically significant there is no need to have those variables in our
model.

Lecture 9 – Exogeneity
Unbiasedness of OLS (recap):

and𝐸(β̂0) = β0 𝐸(β̂1) =  β1
To be able to say this, we need the four assumptions:



● Linearity in the parameter (MLR1)
● Random sampling (MLR2)
● No perfect collinearity (MLR3)
● Zero conditional mean assumption, i.e., (MLR4)𝐸 𝑥( ) = 0

The MLR4 is the assumption we need to focus on the most: does it hold in our model?

Let us consider a model with the explanatory variables and :𝑥1 𝑥2𝑦 = β0 + β1𝑥1 + β2𝑥2 +  𝑢
For the assumption MLR4: 𝐸 𝑥1,  𝑥2( ) = 0  𝐶𝑜𝑣 𝑥1 = 0( ) 𝐶𝑜𝑣 𝑥2 = 0( )
The error term is independent of and , so when they change, the error remains𝑥1 𝑥2
constant.

This assumption does not hold if:
● Is present an incorrect or misspecified functional form: the model is missing,

for example, powers of or , or, always for example, using y in level whether𝑥1 𝑥2
we should be using its logarithmic form.

● There is a correlation with other unobserved factors which are part of u.

Why is different from 0 when we miss nonlinearities?𝐸 𝑥1,  𝑥2( )
● True model: 𝑦 =  β0 +  β1 𝑥1 +  β2 𝑥2 +  β3 𝑥22  +  𝑢
● Estimate: 𝑦 =  β0 +  β1 𝑥1 +  β2 𝑥2 +  𝑢

Where can we find ?𝑥22
Everything that has an effect on y and is not in our model, is contained in the
unobserved part of the equation.

So, is u independent, not correlated with our x’s?
is correlated with so in that sense the zero conditional mean assumption does𝑥22 𝑥2

not hold.

We proceed in the following order:
1. We need to estimate a model of interest (for example, a model with two

explanatory variables and )𝑥1 𝑥2



𝑦 =  β0 +  β1𝑥1 +  β2𝑥2 +  𝑢
฀ we can test for functional form misspecification using the RESET test. In the
RESET test we first estimate the model of interest (the one that we think is the
true model) and then obtain fitted/predicted values.

2. After the first step, we obtain fitted/predicted values: 𝑦
3. Re-estimate the model adding powers of as independent variables.𝑦

Example in the Wooldridge textbook: .𝑦 = β0 + β1𝑥1 + β2𝑥2 + δ1𝑦2 +  δ2 𝑦3 + 𝑢
Here the coefficients of the added powers are equal to zero, so there is no
evidence of misspecification.
Test implement in STATA: 𝑦 = β0 + β1𝑥1 + β2𝑥2 + δ1𝑦2 +  δ2 𝑦3 + δ3𝑦4 + 𝑢

4. F-test of joint significance of added powers of: 𝑦
o If insignificant: there is no evidence of misspecification
o if significant: there is evidence of misspecification ฀ we reject the

model.
Powers are nonlinear functions of the x’s. Significance means that model is
missing some important nonlinearities (they were contained in the error term).

So, if those estimated deltas are statistically significant, it means that the model is
missing important non linearities. We should add powers or interaction again, and
re-estimate and repeat the process. So, the RESET test does not tell us what to do, but
if there is a problem with misspecification in our model. It also does not tell us what
to do in case of rejection, we have to try a different specification.

The other case in which the zero conditional mean assumption does not hold up, is
when we have correlation with others unobserved factors.
If we take a simple model:𝐻𝑜𝑢𝑠𝑒𝑝𝑟𝑖𝑐𝑒 =  β0 +  β1 𝑖𝑛𝑐𝑜𝑚𝑒 +  𝑢
We are interested on the fact that the average income has on the average price in a
neighbourhood.



However, it could be possible (we are not sure yet) that if a house price in a
neighbourhood is higher, the income is higher.

If that is the case, if y has an effect on x, we say that there is reverse causality.

If there are other factors such as: amenities in the neighbourhood, social capital, the
size of the houses and other factors that have an effect on the average house price
and on the income, if we estimate the model by OLS, we are estimating a mixture of
all this instead of just the effect of interest. is going to catch not only the effect ofβ1
interest, but also a mix of all of this.

If that is the case, the fourth assumption does not hold, i.e. income is said to be
endogenous. OLS do not estimate causal effect consistently.
An explanatory variable is endogenous when it is correlated with the error term,
either because there is reverse causality, or because there are other factors
correlated with x and with y. and in that case OLS do not estimate causal effect
consistently and what we obtain is an estimate of the association of the two
variables; for example, in this case, could give us the association between incomeβ1
and the average house price.

There are possible solutions.
The first one, when we do not have reverse causality, is to think about other
characteristics that are not included in the model but have an effect both on income
and house prices and estimate a more complete model:

ℎ𝑜𝑢𝑠𝑒𝑝𝑟𝑖𝑐𝑒 =  β0 +  β1𝑖𝑛𝑐𝑜𝑚𝑒 +  β2𝑟𝑜𝑡𝑡𝑒𝑟𝑑𝑎𝑚 +  β3𝑑𝑒𝑛𝑠𝑖𝑡𝑦 +  β4𝑝𝑒𝑟𝑐_𝑦𝑜𝑢𝑛𝑔 +  β5𝑝𝑒𝑟𝑐_𝑒𝑙𝑑𝑒𝑟𝑙𝑦 + 𝑢
But is it enough? Sometimes could be, but often no.

We could try to include more relevant variables but difficult to account for all
relevant variables that influence income and house prices.



There is a gold standard for estimating causal effects, which is to randomize the
explanatory variable of interest.
For example, in our example, it consists in randomly allocating houses to people to
see if there are different effects on house prices and income; people cannot choose
where to live. Another idea could be re-allocating income in a similar way.
But in reality, we just cannot randomly tell some people to buy some houses and to
others not, and we as well cannot take people’s income and randomly distribute it
across the population.

There are other possible solutions:
● Instrumental variables
● Panel data

We are going to look at them in future lectures.

Lecture 10 – Beyond statistical significance
This lecture is relevant not only for the linear regression, but for the entire course as
well.

We start by asking the following question: is only significance important for us?

statistical significance and economical significance

Is important to distinguish the statistical significance and the economical
significance, or whether the magnitude of the estimate is really relevant.

If the aim of our research is to test a hypothesis, we point out that a not statistically
significant result is also a result.

For example, if we are interested in seeing if a new intervention has an effect, if we
find out that we do not reject the null hypothesis that the effect is 0, this is also a
result per se: we could be interested to know if we are making bad policies, for
example.



Significant does not mean certain: we base our analyses on the p-value and on the
confidence intervals ฀ if we take a random sample of the population, many time of
the same size, in the 95% of the cases the true population parameter is going to be
there. However, we are not sure if in this specific case our sample is there. The fact
that we do not reject the null hypothesis or that we do reject it does not mean that
we are accepting a given hypothesis.

Significant does not mean neither relevant nor important nor substantial: the size
matters.
If we have a huge sample size, we are going to detect very small effects. However, if
the effect is really small, we may just conclude that an intervention is not really
needed, as the effect is so small that it could also be 0, even if it is statistically
significant.

Our ability to find significant results also depend on other characteristics of the data
like the sample size, how good are our measures, how much noise do we have.
We always have to see how much uncertainty there is around our estimate ฀ this is
going to come from the confidence intervals.

Example: We want to estimate the returns to education using OLS11 (Garcia-Gomez,
2022): 𝑤𝑎𝑔𝑒𝑠 = 8 + 2. 5 * 𝑦𝑒𝑎𝑟𝑠_𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛
The wages are equal to €8 + €2.5 per year of education.
Focusing on the coefficient of years_education:

If we focus on the coefficient of years_education:
● P-value = 0.01; p-value = 0.0001

฀ The coefficient is statistically significant in both cases.
But if the P-value = 0.30 the coefficient is statistically insignificant.

When could this happen?
If we start from a very small sample, we get the same point estimate, but the
standard errors are going to be large, but then, again, we get an estimate of 2.5.
Once we get larger and larger, the standard errors become smaller and the
confidence interval as well. In this way we will obtain a more precise estimate of the
effect.



If we are interested not in testing the hypothesis, but in whether there are returns to
the education or not (so we do not care about testing this null hypothesis), we should
be aware that there is a certain amount of uncertainty around our estimate.
For example, we make three regressions and have to make a decision based on the
last one. Can we decide to get another year of education?
We get the 2.5 but we should not think only at the statistical significance. Instead, we
should think at how much our wage is, and if it is going to increase either in relative
or absolute terms thanks to this 2.5 increase. If €2,5 per year seems a good relative
increase, it might be worth to add a few years of education at least.

economic significance (or practical significance or
relevance)

We have to think if it is a large increase (฀ for knowing this we have to see the
magnitude of the coefficient).
The increase of €2.5 per year seems like a large increase, but what if, estimating a
model, our is going to be equal to 0.01 and the p-value to 0.01? It is not a statisticallyβ
significant effect. Can we conclude that it is a relevant effect if our wage increases
by €0.01 for every additional year of education? The effect is very small and close to
0 independently of this effect not being a statistically significant effect.

So, when we look at our results, we need to go beyond saying whether they are
statistically significant or not. It is important to look at the uncertainty around our
estimate and the confidence intervals. It is equally important as well to think about
the magnitude. We can then look at the estimated coefficient, the absolute effect,
but it also is useful to compare it with another magnitude, like average values, to
inform about relative effect.

validity of results

When we think about the validity, the first question is thinking about our study per se,
our samples, our analysis, and whether the study provides causal estimates for the
population and setting of our study.
Does the assumption to get a causal effect hold? That refers to internal validity.

We talk about external validity when we want to use the conclusions from our study
and then extrapolate them to other populations and settings.



For example, in our example we were looking at the house prices, and the income in
neighbourhoods in the Netherlands. Can we extrapolate those conclusions to other
countries? This will depend on how the housing market works in the different
countries.

We can also think that those results were using data from 2012; can we extrapolate
those conclusions to nowadays?
We can then think on how the housing market has changed. Are there reasons to
think that the association between the household income and the household prices
has become stronger or less strong given the dynamics over the past years?

When we have our results and it is the moment to write the conclusions, what
evidence should be of our interest?
We should look for the absolute and relative effects about the importance, about
what those number mean, whether they are statistically significant or not, the
amount of uncertainty around that estimate, the presence of potential biases
(maybe our sample was not completely random, for example, and this type of
discussion regards the internal validity of our studies, or if we extrapolate the
conclusions we also have to think about the external validity.

There could be then other dimensions like, for example, the heterogeneity of effects,
so whether the effects for different groups of the population are different. For
example, if we think about the returns to education, we expect the returns to
education to be different for men and women, for people with different ethnic
backgrounds, people from different socioeconomic groups. If this is the case, we can
also analyse this heterogeneity of the effects.



Applied microeconometrics -
Module 2 – Endogeneity and
instrumental variables estimation
Lecture 11 (2.1) – Introduction

causality and ceteris paribus

The economist’s goal is to infer a ceteris paribus relationship or to make sure that
one variable has a causal effect on another variable. Another goal is knowing what is
behind this causal effect.
We must be careful when we think we have found an association, because it may be
tempting and we could think we had found one even if we actually don’t.

Example12 (Garcia-Gomez, 2022)
Imagine an alien observing human behaviour. He sees that some people go to the
hospitals and others do not. He compares the outcome of those two groups of
humans and conclude that people that go to hospitals are more likely to die. So, the
alien, trying to improve human’s well-being decides to close all the hospitals to save
human lives.
He was inferring from an association, a causal effect, but was missing some very key
information: for example, humans that go to hospitals are more likely to die
beforehand because their health was worse.

We have to focus on this distinction, between associations and causal estimates ฀
when do OLS provide causal estimates?

฀ We introduce a new instrument, the instrumental variables regression, that allows
us to estimate a causal effect in certain conditions under some assumptions. We will
discuss when those assumptions hold and if we have the right data to do so.

For the following lectures, our example will focus on what is the effect of retirement
on depression13 (Garcia-Gomez, 2022).



We see that in many countries, governments are increasing the retirement age due
to the pressure on public budgets. This can alleviate how much government spend
on old age pensions. But we could also wonder whether these types of policies have
a spillover to other budgets.

Could these choices have an adverse effect on people’s health?
If people have to work, if there is a negative effect on our health because we have to
work longer, we are going to have a decreased productivity, or it could be that we
end up retiring, leaving the labour force through other pathways like disability
benefits.
We can also think that retiring has a bad effect on our health because we are more
likely to lose our cognitive ability because we practice less, some of us gets bored,
and then this could have a negative effect on mental health. If that is the case,
increasing the retirement age can also have a positive effect on health ฀ it all comes
up to it being an empirical question.

Our data come from a large European health survey, the Survey of Health, Ageing
and Retirement in Europe (wave 1, 2004)14 (A. Börsch-Supan, coordinator, 2004).
The information come from 11 countries including individuals and their spouses that
are older than 50.
The dependent variable of interest is a depression scale, the EuroD (from 0 to 12).
Higher values of the depression scale are associated with a worse mental health.
Our main explanatory variable of interest Is the variable “retired” (it takes value 1 if
the individual is retired and 0 if not).
We will also control for other explanatory variables like age (in years), marital status
and the education level, whether the individual has a low, medium, or high
educational attainment.

If we estimate the regression model on STATA, we estimate an OLS with robust
standard errors and then we ask ourselves what the effect of retirement on
depression is. We see that the estimated effect, or association (we do not know yet
what is), is positive, which means that the mental health of the individuals worsens
when they retire compared to not being retired, and the magnitude is 0.7 points ฀ a
retired individual has a mental health score of 0.7 points higher compared to a
non-retired individual, ceteris paribus.

Is this a true causal effect or an association? For answering this question, we need to
remember the zero conditional mean assumption: it will not be a causal effect if the



zero conditional mean assumption does not hold. This happens when we have an
incorrect or misspecified functional form; this is something that we can test with the
RESET test, or when we have a correlation with other unobserved factors that are part
of u. in this case our zero conditional mean assumption will not hold if there are
unobserved characteristics that determine mental health and are correlated with
retirement status, age, educational attainment, or marital status. If those unobserved
characteristics are not correlated, the zero conditional mean assumption will hold,
and if they are correlated, it will not.

So, we have to discuss whether there are correlations with other unobserved factors
that are part of u; we will see that this will happen if we have omitted variables bias,
collider bias and reverse causality.

Lecture 12 (2.2) – Omitted variable bias
The following graph shows how the following causal relationship works:𝑦 = β0 + β1𝑟𝑒𝑡𝑖𝑟𝑒𝑑 + β2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β3𝑎𝑔𝑒 + β4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑢

What can be present in the unobserved term?
Other factors such as the individual’s level of enjoyment of its work, and meaningful
stressful event of its life, like a serious illness such as cancer.
Enjoying work influences only mental health, or does it influence the probability to
retire too? If the answer to this question is affirmative, then this variable is going to be
correlated with retirement, and it is also going to be a determinant of depression.



Another relevant factor in this example are stressful life events: are they also likely to
have an effect on whether you retire or not?
Some yes and other no.
A friend having a bad accident does not have an effect on the probability that we
retire, then it is not a factor of interest for us, even if it is a stressful life event. On the
other hand, there is evidence that having a severe health condition (like a cancer)
increases the probability of retirement.
If this also affects our mental health (but not through retirement) then this is also
going to have an effect on depression. Omitting any of those variables creates an
omitted variables bias: we have an omitted variables if those variables are
correlated with x and are also the determinant of y.

omitted variables bias
If we have an omitted variables bias, it could go in both directions. It could be:

● An upward bias
● A downward bias

There are going to be situations where we will not have this additional factor,
otherwise, we would put this in the model. We could argue about this bias being
positive or negative:

● To say that a bias is positive is the same as saying we have an upward bias: in
these cases, the estimated coefficient (the value we obtain from our
regression model) is larger than the population value (that we do not know:
we get an estimate, and we can argue that the estimate is larger than the
population value).

● To say that a bias is negative is the same as saying we have a downward bias:
in these cases, the estimated coefficient is smaller than the population value.

Whether we get a positive or a negative bias, depends on the sign of the correlation
of the omitted variable with (endogenous variable), the variable that in our𝑥2 𝑥1
model is correlated with the unobserved characteristics. It also depends on the sign
of the correlation of the omitted variable and y, the dependent variable, as well.

𝐶𝑜𝑟𝑟 𝑥1, 𝑥2( ) > 0 𝐶𝑜𝑟𝑟 𝑥1, 𝑥2( ) < 0β2 > 0 Positive bias Negative biasβ2 < 0 Negative bias Positive bias



15 (J. M. Wooldridge, 2014)

When the sign of those two correlations (between and ) is positive, and when𝑥1 𝑥2
(which means that the omitted variable has a positive effect on ourβ2 > 0

dependent variable), we have a positive bias.
We also have a positive bias when those two are negative. In any of the other two
combinations we have a negative bias. For example, we get a negative bias when
the correlation between the endogenous variable and the omitted variable is
negative, so a correlation between and is negative, and when the correlation𝑥1 𝑥2
between the omitted variable and the dependent variable is positive. So, the
coefficient of would be positive if we could have this variable in our model.β2
Let us think about this in our example.
What would be the bias of retired if we do not control for education? We assume for
the moment that there are no other things that could be contained in u.

The true population regression is the following, in which we control for retired marital
status, age and education:𝑦 =  β0 + β1𝑟𝑒𝑡𝑖𝑟𝑒𝑑 + β2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β3𝑎𝑔𝑒 + β4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑢
But if in our data the variable “education” is missing, the model that we can estimate
is a model in which we can control to estimate the effect of retirement on mental
health.
But we can only control for marital status and for age:𝑦 =  β0 + β1𝑟𝑒𝑡𝑖𝑟𝑒𝑑 + β2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β3𝑎𝑔𝑒 + 𝑢
Endogenous variable : retired𝑥1
Omitted variable : education𝑥2 𝐶𝑜𝑟𝑟 𝑥1, 𝑥2( ) > 0 𝐶𝑜𝑟𝑟 𝑥1, 𝑥2( ) < 0

β2 > 0 Positive bias Negative biasβ2 < 0 Negative bias Positive bias

(Wooldridge, 2014)



We must look at what is the correlation between and and what would be the𝑥1 𝑥2
effect of education on mental health (we remember that higher the score for mental
health the worse it is).

What is the expected correlation between retired and education?
Do we expect highly educated individuals to retire earlier or later? We could expect
this correlation to be negative: we expect that highly educated individuals to have
less physically challenging jobs, and this could allow them to retire later.
But somebody else could have a different expectation and suppose the correlation
to be positive instead of negative.
Anyway, for us the correlation is negative. Then the bias would be negative or
positive? For answering this we should reflect on , so we need to think about whatβ2
the expected correlation between education and (bad) mental health is.

Do highly educated individuals have worse or better mental health?
For us the correlation is negative: highly educated individuals have a better mental
health ฀ β2 < 0
So, if is negative and the is negative as well, according to ourβ2 𝐶𝑜𝑟𝑟 𝑥1, 𝑥2( )
expectations, we would expect a positive bias. With different expectations, we could
have a different bias.
It is recommended to reflect on our expectations and argue why we expect each of
those two relationships to be positive and negative.

In the data we have, we could run an estimate on the model with education and also
on the model without education.
We can then compare the coefficient of retired in the two models. The estimated
coefficient in the second model (the one where we exclude the variable education),
it is larger than the expected coefficient in the model that includes the education
variable.

So, if the model with education is a good representation of the population model, we
see that the coefficient of retired is smaller than when we exclude education.
฀ the model without education is a model that suffers from omitted variable bias,
and then we see that we could have an upward/positive bias, because the number is
higher.
It seems that probably our expectations were correct.
If we look at the coefficients, we cannot directly say anything about what is the
correlation between education and retire. We can do that once we have access to



the data. But we can see that the coefficient for edmed and edhigh are negative, so
people with medium and high education have a mental health score that is lower
than individuals with low education ฀ there is a negative correlation between
education and bad mental health.

We can have upward/positive bias either if the estimated coefficient is positive or
negative ฀ the estimated coefficient is larger than the population parameter and it
does not really matter if it is on the positive or negative range of values. The same
happens when we have downward/negative bias.

Biased towards 0: the estimated coefficient is closer to 0 than the population𝐸(β̂1)
parameter .β1
It is important because if we know that our estimate is biased towards 0, we can
argue this is a lower bound of the estimated effect.

If we are in the range of an upward/positive bias, our estimate is going to be biased
towards 0 if it is negative.

If we are in the range of a downward/negative bias, our estimate is going to be
biased towards 0 if it is positive.

Should we always add more controls?
If we can control for omitted variables, if we are able to observe that they affect both
x and y, we should add them to our model to be able to get this causal effect, a
ceteris paribus conclusion.



We could think to add omitted variables that affect only y. By doing this, we will
increase the goodness of fit, but adding those variables to the model is not needed
for ceteris paribus conclusions.

Adding irrelevant variables (not correlated with y) is not a problem to get ceteris
paribus conclusions, but it will have a cost in terms of efficiency: we will have a less
efficient estimator ฀ it is better to leave them out than to include them.

Sometimes adding an additional control introduce a collider bias ฀ it must not be
done!

Lecture 13 (2.3) – Collider bias
The collider variable is a variable that will introduce bias if we control for it16.
It is different from what we have seen in the previous lecture, when we were worried
about variables that we did not have.
The collider is a variable in our dataset that we may think it is positive to include as
part of our explanatory variables, but if we include it, it will make thing worse.

We will see some examples using Directed Acyclical Graphs (DAG), similar to the
graphs previously used.
In these graphs the arrows indicate that there is a causal effect x ฀ y
“฀” is a causal effect
In these graphs we also include all the common causes affecting the two variables.

The first example of a collider bias is the selection bias, which is a specific type of
collider bias.

THE SELECTION BIAS

What is the importance of talent and beauty into being a movie star?
Is there a masked relation between talent and beauty in this industry?

Figure n. 1
(Cunningham, 2020 https://www.scunning.com/causalinference_norap.pdf )17



Let us study every aspiring actor and actress.
We can measure for each of them their beauty on a scale and what is their talent on
a scale centred to zero.

We can plot all these data in a scatter plot.

Is there any relationship between these two variables? Looking at the third image in
the figure n. 1 seems that there is no relationship. The ones who make it into the
industry are those who are on top of the distribution of beauty and talent.

We can also observe the distribution among those who do not make it and those
who make it, respectively the first and second images of figure n.1.
Focusing on the ones that do make it, it seems that beauty and talent are negatively
associated: the ones who are more talented are less beauty and the other way
around.
But if we do not split the distribution and select our sample, we would not find any
association.
This selection creates this spurious correlation which is not really in the overall data ฀
this is what we call a selection bias



Now, let us return to the retirement and depression example. We assume that the
DAG represents the true effect, and all the variables are dummies.

There is no arrow between retirement and depression ฀ There is no real effect
between the two variables
The third variable, obesity, is caused by both retirement and depression.

For example, when people retire, they change eating habits, physical activity habits,
etc. This will have an effect on obesity. We can make the same reasoning for
depressed people.

● If retirement = 1 ฀ it increases the chances of becoming obese (because
people move less)

● If retirement = 0 ฀ people are less likely to be obese
● If depression = 1 ฀ people are more likely to be obese
● If depression = 0 ฀ people are less likely to be obese

What happens when we control for obesity?
What is the relationship between retirement and depression when obesity is equal to
0 and when is equal to 1?
This is what we do when controlling for the effects of other variables.

If we run a regression between retirement and depression, there would not be any
association.
When obesity assumes value 1, it is likely that the person is retired because if it is, it is
more likely that he is obese, and it is likely that he also is depressed, because both
retirement and depression cause obesity.
When obesity assumes value 0, we have less retired people and less depressed
people.



Once we control for obesity it seems that there is a relationship between retirement
and depression. If we estimate now this OLS, we will likely get a positive estimated
coefficient between those two variables.
฀ Controlling for obesity creates a bias
฀ Obesity is a collider because it creates a collider bias; this is a type of bias that
exists because we introduce a variable in our model that is caused by both the
explanatory and the dependent variables.

If the DAG would have been:

The reasoning would have been the same: we could get an estimate that it is not the
true causal effect when we control for obesity because it is introducing the collider
bias.
We could get, in this DAG, a causal effect by just including the variables “retirement”
and “depression”.

So, in this example, it is better not to include obesity in the model, because is a
collider and introduces the collider bias in our estimates.

How do we select then which variables to include in our model?
There is not any existing formula that does it for us. We have to reflect on the
theoretical model or the previous evidence and if there is any correlation between
the two variables already known in the scientific world.

Then we have to reason about what is the expected relation between the variables.
In this regard a DAG can help us because it illustrates how the different variables are
related to each other.
We will need to make assumptions, as it is required every time we estimate a model
and use estimators: it is all based on assumptions. We should also be able to defend
those assumptions.



Lecture 14 (2.4) – Reverse causality
We currently studying the effects of retirement on mental health, and we also are
controlling for marital status, age, and education.𝑦 = β0 + β1𝑟𝑒𝑡𝑖𝑟𝑒𝑑 + β2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β3𝑎𝑔𝑒 + β4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑢

The lower arrow indicates reverse causality.
To better understand: if our mental health worsens, we are more likely to retire.

In this case, OLS will underestimate or overestimate the effect if reverse causality is
present.
฀ will be biased ฀ the expected value will be different from the populationβ1
parameter.
If depression has a negative effect on retirement, the causal effect will be
underestimated.
If depression has a positive effect on retirement, the causal effect will be
overestimated.

In this specific case we expect depression to have a positive effect on retirement,
therefore the explanatory value of the estimated parameter is going to be larger
than the true population parameter.

How can reverse causality cause a bias?
When we have an omitted variable bias, it is easier to see the reason of the
correlation between the error term and the explanatory variable.
With reverse causality it is more complicated, but easy to see using a couple of
equations.𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = β0 + β1𝑟𝑒𝑡𝑖𝑟𝑒𝑑 + β2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β3𝑎𝑔𝑒 + β4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑢
The reverse causality implies that we can estimate a model like the following:𝑟𝑒𝑡𝑖𝑟𝑒𝑑 = γ0 + γ1𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + γ2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + γ3𝑎𝑔𝑒 + γ4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑣



Retired is the dependent variable and is described by the mental health, marital
status, age, and education.

The zero conditional mean assumption means that in the first equation there is no
correlation between retired and all the other variables and the error term. It means
that we have to check if the covariance between u and retired is equal to zero or not.

So needs to be equal to 0.𝑐𝑜𝑣 𝑢,  𝑟𝑒𝑡𝑖𝑟𝑒𝑑( )
But we can also write as following:𝑐𝑜𝑣 𝑢,  𝑟𝑒𝑡𝑖𝑟𝑒𝑑( )𝑐𝑜𝑣 𝑢,  γ0 + γ1𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + γ2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + γ3𝑎𝑔𝑒 + γ4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑣( ) = 0
But it is impossible that 𝑐𝑜𝑣 𝑢,  γ0 + γ1𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + γ2𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + γ3𝑎𝑔𝑒 + γ4𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑣( )
would be equal to 0 because we have the u, which represents all the things that
explain depression other than retirement, marital status, age and education. So, this
is going to be correlated with depression and this covariance cannot be equal to
zero.

In this case the zero conditional mean assumption does not hold.

What should we do now?

The model where the explaining variable of interest is endogenous (without any
possibilities of having this fixed) could still be very useful. Having causal effect is
always preferrable, but in many cases we will only be able to get an association.
So, we must recognize that we cannot measure causal effect but simply
associations. These associations often are a combination of the effects of third
factors, reverse causality and the real causal effect.

This will have an effect on how we interpret our results. We have seen in our example
that the zero conditional mean assumption does not hold, so we will not say that
retiring will increase mental health for sure, but we need to express our interpretation
in terms of an association.
In our example, we can say that on average the mental health status of retired
individuals is higher than the one of non-retired individuals by 0.7 points, after
controlling for the other variables.



We cannot draw ceteris paribus conclusions as we cannot be sure that all the other
things do not change at same time, and we mention the variables we control for as
they are included in our model.

Lecture 15 (2.5) – Estimation and
interpretation of instrumental variables

instrumental variables

One of the tools we can use to estimate the causal effect is an instrumental variable,
if we have the appropriate data and the required assumptions are satisfied.
With an instrumental variable we are able to isolate exogenous variation. If we think
about the variation in any given variable, it consists of two parts:

1. Endogenous variation: the part of the variation that is correlated with the
unobserved.

2. Exogenous variation: the part of the variation that is independent of the
unobserved.

If we think about all the reasons people retire, there are reasons that are endogenous
to the individual, so they are related to what we cannot observe. Examples of this
could be, if that person is enjoying his/her work, whether that person has a health
impairment, etc. All these variables are related to mental health, and it also explain
why people do retire. Maybe there are other reasons that motivate people to retire,
related to retirement, but not related to the mental health of the individual. These
reasons are what we have identified with exogenous variations.

So, we have to isolate the exogenous variation to focus on the causes of why people
retire and then use them to estimate a causal effect.

If we look at the following graph:



Mental health can also have an effect on the probability that someone retires. Then
we have other factors that have an effect both on retired and depression.

The idea behind this instrumental variable is that this variable is able to capture
some information that explains why some people retire (this variable is our
instrument). This variable has not to be correlated to depression, it has only to
influence retirement. This does not have an effect also on the unobserved
characteristics.

The instrumental variable estimator looks first at the effect of this instrument on the
probability that someone retires. This is the first stage. Once we get these predicted
reasons on why people retire for exogenous reasons, then we use this exogenous



variation to look at the effect of retirement on mental health. This is the second
stage.

We will first look at the first arrow in the figure and then at the second. What could be
a variable that we could put instead of z? What could explain that people retire but it
is uncorrelated with depression? In many countries, once people reach the early
retirement age or the normal retirement age they do retire at that specific age. If we
plot for any country the probability that someone retires, there will be a spike at
those specific ages.

We can use this variation whether someone is over their normal retirement age, for
example, to predict whether someone is retiring or not, and then use this exogenous
variation to look at the effect of retirement on depression.

To do this we can use a two stage least squares estimator.
In the first stage:𝑅𝑒𝑡𝑖𝑟𝑒𝑑 =  π0 +  π1𝑒𝑑𝑚𝑒𝑑 +  π2 𝑒𝑑ℎ𝑖𝑔ℎ +  π3 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 +  π4 𝑎𝑔𝑒 +  π5 𝑓𝑢𝑙𝑙 +  𝑣2
We estimate retired as a function of education, marital status and age, with an
additional variable, the full, which is the age at which you are entitled to full
retirement benefits in the European countries.

We have variation in this variable because it varies through different countries, and
even within some countries there are different retirement age for men and women
(at least at the year of the data).

From the first stage we get the predicted retirement: 𝑟𝑒𝑡𝑖𝑟𝑒𝑑^
We then insert this predicted value in the second stage:𝑦 = β0 + β1 𝑟𝑒𝑡𝑖𝑟𝑒𝑑^ + β2 𝑒𝑑𝑚𝑒𝑑 + β3 𝑒𝑑ℎ𝑖𝑔ℎ + β4𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β5 𝑎𝑔𝑒 + 𝑒𝑟𝑟𝑜𝑟



In the second stage we estimate by OLS. This model has the same explanatory
variables as before, but instead of having the observed retired we have the predicted
retired.

Given that in the first stage we control for educational status, educational
attainment, the marital status and age, the variation that is picking from retired
comes from the fact that someone has reached their normal retirement age, the full
age.

We can estimate by OLS the first stage and then the second stage. If we were to do
this, the standard errors in the second stage could not be correct because we need
to consider that retired is not the observed retired, but only a prediction.
Stata does everything together to correct the standard errors in one go, so we do not
have much to worry about. We only need to tell Stata which variable is our
endogenous variable, and which is the instrument. We can also ask for
heteroskedasticity robust standard errors as we did in OLS.

In Stata we first see the first stage regression where we see that we have this variable
full. We will not interpret this output because our dependent variable “retired” is a 0-1
variable and we have not seen yet how to interpret such an outcome (we will do this
when we talk about binary models).
What we cannot really say is that we see that full is statistically significant in the first
stage, and that those who go over this age are more likely to be retired. This is how
we can interpret the sign of this coefficient.

Moving to the second stage we have all the variables and the variable retired.
Comparing its coefficient to the number we had before, the coefficient is larger and
what it, still, suggest, is that those that retire have a worse mental health status
compared to those that do not retire. We can interpret this coefficient in the same
way as we did before: the mental health index increases by 2.2 points (on a scale
0-12) when an individual retires compared to being non retired, ceteris paribus.

We can see that this effect is statistically significant. If we look at the confidence
interval, we see that now it has broadened. One of the things that happen with
instrumental variables is that because we only use a small part of all the variation,
the estimate is going to be less precise, and it is important to see how much less
precise this estimate becomes.



We can use the same method if we have more than one endogenous variable in the
model. We can use instrumental variable regression in the same way (we only have
to estimate the first stage for each of the endogenous variables and we would need
more than one good instrument; we should have one for each of the endogenous
variables). In fact, we always need the number of instruments to be larger or equal to
the number of endogenous variables. But it is hard to usually find this exogenous
source of variation, so it will be nearly impossible to be able to control for more than
one endogenous variable in each model. But if, somehow, we can manage this, once
we have the second stage, we interpret the coefficients in the same way we used to
do when we had an OLS.

Lecture 16 (2.6) – Instrumental variables
assumptions
Our model of interest is a model in which we want to estimate the effect of
retirement on depression, and we want to use an exogenous variation that it is not
related to depression causing retirement, or the influence of other omitted variables.
In order to do that we need to find an instrumental variable that is correlated with the
endogenous variable.

The assumptions are the following:



● The instrumental variable must be correlated with the endogenous variable:𝐶𝑜𝑣 𝑟𝑒𝑡𝑖𝑟𝑒𝑑,  𝑧( )≠0
In this case we say that it is a relevant instrument.
We need not only a correlation between the two variables, but a strong
correlation. They need to explain a large part of the retirement decision: we
need a strong instrument.

● The instrument must not be correlated with any other (unobserved)
determinants of depression:𝐶𝑜𝑣(𝑢,  𝑧) = 0
In this case the instrument is exogenous. So, our instrument can only affect the
dependent variable through the endogenous variable, after controlling for all
the other variables in our morel. After this we have a valid (exogenous)
instrument.

relevance assumption

The relevance assumption is that the covariance between the endogenous variable
and the instrument is different from zero:

𝑐𝑜𝑣(𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑥,  𝑧)≠0
This is something that we can conclude from looking at the first stage regression,
where we predict our endogenous variable, using the instrument, so we can see
whether the instrument is statistically significant or not. If it is not, in the second stage
we will get very large instrumental variable standard errors. It is important that we
have a strong correlation.

If we look at the first stage on Stata at the coefficient of full, we see that it has a
t-statistic of 9.81 and that the p-value is very small too ฀ we can say that this
instrument is highly significant.

The more variation in the variable x our instrument explains, the more variation will
be available in the regression. Then we will have more variation to be used to look at
the effect of retirement on depression. There is a little problem when we explain very
little (so when our instrument is not strong), but we have a great instrument. In that
case, the IV are no longer reliable.



We can only use instrumental variables if we have a strong instrument.

How do we check for weak instruments?
There is a rule of thumb that we can use when we have one endogenous variable: we
must look at the F-test of the first stage, and it has to be larger than 10; if it is smaller,
it suggests that the instrument is weak.

validity assumption (or exogeneity assumption)

This assumption refers to the correlation between our instrument z and the
unobserved component. Any assumption that we make about the relationship
between the unobserved components and any other variable is an assumption that
we have to argue, and we will not be able to fully test it.
There are some partial tests, but they will not be covered here because none of those
tests will be able to tell us if our instrument is valid or not, and they are often misused
in the literature. Some people claim that passing this test means that the instrument
is valid, but then we could find other reasons for which this assumption could not be
satisfied.
We have to use economic theories, our own reasoning and previous evidence to
argue about the validity assumption.

In this case, for example, to justify why using the normal retirement age is exogenous
or not, we can use our knowledge of the institutional setting and we know that the
way in which normal retirement ages have been defined is independent of the
mental health of the population.

Lecture 17 (2.7) – Instrumental variables vs
OLS
To choose between IV and OLS there are the following steps to follow:

● We have to use IV only if we have a valid and strong instrument.
Before even running any IV regression models we must think about the
assumptions of our instrument. Does it satisfy them? Is it valid? Is it not
correlated with the unobserved term? Is it strong?
If we have a valid but weak instrument, we will not get a reliable IV estimate.

● We need to have large sample size.



When we have a valid and relevant instrument, IV is consistent, but under
endogeneity IV is biased. So, we must rely on this consistency property that
only applies to large sample size. If it is small, we are no better off using IV
instead of simple OLS.

● We choose IV if our explanatory variable is endogenous; if it is exogenous, we
do not gain anything by using IV, but only lose information because IV are
inefficient and do not use all the variation that we have in our explanatory
variable. We throw away information if we want to gain in terms of getting a
causal estimate, even though it is not a gain if we do not get a more reliable
estimate.
Our IV is going to be better the more highly correlated our instrument is with x.
So, then we are going to get a smaller variance of the IV estimate. The
stronger the instrument, the less we will lose in term of efficiency in terms of IV.

We have already discussed the first and the second conditions, but how do we
determine if an x is endogenous or not? We do not observe the error term, and we do
not observe the unobserved characteristics, so we cannot just check the correlation
between the unobserved and x to determine whether is endogenous or not.

We can use our instrumental variable estimator. To inform about this endogeneity.
We can use the same logic behind IV to test for the exogeneity of retired:

1. We first estimate the first stage equation:𝑅𝑒𝑡𝑖𝑟𝑒𝑑 =  π0 +  π1𝑒𝑑𝑚𝑒𝑑 +  π2𝑒𝑑ℎ𝑖𝑔ℎ +  π3𝑚𝑎𝑟𝑟𝑖𝑒𝑑 +  π4𝑎𝑔𝑒 +  π5𝑓𝑢𝑙𝑙 +  𝑣2
2. From the equation we get the residuals: . What are they picking up? The𝑣2

variation in retired that is not explained by the educational attainment, marital
status, age, and our instrument. This is the potentially endogenous variation.

3. We then can estimate our main equation with OLS, adding residuals of step 2:𝑦 = β0 + β1𝑟𝑒𝑡𝑖𝑟𝑒𝑑 + β2𝑒𝑑𝑚𝑒𝑑 + β3𝑒𝑑ℎ𝑖𝑔ℎ + β4𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + β5𝑎𝑔𝑒 +  δ1𝑣2 + 𝑒𝑟𝑟𝑜𝑟
We have our main equation and the residuals that are picking the potentially
endogenous variation of retired. If this variation is correlated with our
dependent variable, then is going to be statistically significant.δ1

4. We test the significant of : if it is insignificant there is no evidence ofδ1
endogeneity and if it is significant there is evidence of endogeneity. It can be
shown that if we do this procedure the we could get for retired, is alsoβ1
similar to the one that we get if we use the IV.



Stata can do all the steps above all at once. The null hypothesis is that the variables
are exogenous. We get to different statistics, similar in 99.9% of the cases. In any of
those cases the p-value is very small, so we reject the null hypothesis. Is retired
endogenous? If we reject the null hypothesis that retired is exogenous, so this
evidence that suggest that retired is endogenous.

If retired was endogenous this would be the third case in which we would prefer IV.
We have been able to argue about the two assumptions in the previous lectures: we
have a large sample size, and our explanatory variable is endogenous: this is a case
in which we would prefer IV.

Many times, we will not have a valid and strong instrument. The golden rule for
getting a causal effect is randomization, but this is not always possible neither,
because it is very expensive or because there are ethical issues (imagine we want to
look at the effects of going to prison on the probability of committing future crime).
But there ethical about putting people in prison. We could also see the effects of
providing hospital care versus not, or even retirement; we cannot tell people to retire
at random.

Another solution we can apply is the use of panel data methods.

Lecture 18 (2.8) – Potential outcomes and
DAGS
We will look at two useful frameworks to analyse causal effects:

● DAGs
● Potential Outcomes Framework

DAG (Directed Acyclic Graph)

DAGs are the graphical representation of a chain of causal effects18 (Garcia-Gomez,
2022) in which the nodes are the representation of random variables. The causal
effect between two variables is represented by the arrows, which also indicate the
direction of causality. If an arrow goes from variable A to variable B this arrow
indicates the direction in which we assume that the causal effects work out. If there



are no arrows, we assume that there are no causal effects between the two
variables.

The causal effect between the independent variable x and the dependent variable y
can be direct but also indirect: in this latter case we say that the causal effect is
mediated by a third variable (x ฀ D ฀ y which means that the variable x influences
the variable D, which has then an effect on the variable y). if we think about the
causal effect of income on health, there are reasons why an additional euro per se
could improve our health, but there are many more reasons on why income may
indirectly have an effect on health. For example, higher income makes it possible to
have a better quality, or it can grant us the access to health insurance, etc. All these
effects are not direct but are mediated by third variables.

DAGs are useful to graphically represent the relationships variables and to
acknowledge the assumptions and the data available in our specific setting. If x and
y are connected by a solid arrow, we know that we have this information that we
observe. If instead we have a dotted line, we know that it is an information we do not
observe. Looking at these relationships should help us think whether this information
that we do not observe is relevant or not to estimate a causal effect.

We are interested in knowing the returns on education, so how much does a
schooling brings in terms of educational attainment.
We have the following variables:

● X = educational attainment
● Y = earnings
● I = family income
● PE = parental education
● B = family background



How much an additional year of education translates into higher earnings?
In our theoretical framework, also family income plays a role: higher family income
gives us easier access to certain positions, and that increases our earnings. A higher
family income also affects our educational attainments because it allows us to
attend better schools.
We also know that some family background characteristics influence both our
educational attainment as well as parental education. Parental education has an
effect as well on family income.
When we have the dotted line, we know that the family background information may
be observable for individuals and their families, but not to us.
If we have this information, can we estimate the causal effect on educational
attainment and earnings?
That is possible because when we observe for X and Y for family income, there are no
other unobserved. This means that there is no other channel in which parental
education or family background has an effect on the earnings. If this was the setting,
it would be possible to estimate the causal effect.

If family background also influences earnings:

If family background also has an effect on earnings, by controlling for X and I could
not be sufficient to estimate a causal effect of educational attainment on earnings,
because we could have this omitted variable bias as family background also has an
effect on Y and X.

The DAG is useful to clearly illustrate the assumptions that we are making, the data
we are able to observe and help us see whether we estimate a causal effect or if we
are missing because of the effect of these additional variables. In other examples we



could also have a collider. In any case it makes it impossible to get a causal effect.
We get an unbiased estimate of the causal effect, and we can talk about association
or partial associations.

Potential Outcomes Framework (POF)

It is not a graphical interpretation, but a tool for when we are interested in the effect
of an intervention or a variable on an outcome Y.
To keep it simple, let us think that our intervention is a binary.
For example, as we were looking throughout this topic of looking at the effects of
retirement on depression, our treatment T could be retired.
If we think about the returns on education, for example we could think about our
indicator as getting a college degree versus not. Treatment is a general term: it could
be a medical term used in the medical field, but it can also be part of a training
program, it can be retired, it can be getting college education ฀ it is the effect of the
variable we are interested in.
If we think for every individual, we have two potential outcomes. Returning to the
example of the returns to education, 1 could be the earning that that person could
get if goes to college and 0 the earnings that that person does not get because he
did not go to college.
Thinking about the effects of retirement on depression, for a given person in a given
year, we are interested in the mental status of that person if retires and the mental
status of that person if does not retire. Those are our two potential outcomes.𝑌𝑖 = {𝑌𝑖 1( )   𝑖𝑓   𝑇𝑖 = 1 𝑌𝑖 0( )   𝑖𝑓   𝑇𝑖 = 0 
We can then define the treatment or our causal effect as the differences in between
those potential outcomes. So, the difference in our mental health, if you retire
compared to not retiring. The difference in our health if we go to the hospital
compared to not going. The difference of the earning if we go to college minus the
earning that we could get if we do not go.∆ = 𝑌𝑖 1( ) − 𝑌𝑖 0( ) = 𝑇 = 1( ) − (𝑌|𝑇 = 0)
This is how our data could look like:
Individual Treated 𝑌(1) 𝑌(0) Causal effect
1 0 𝑌1(1) 𝑌1(0) 𝑌1 1( ) − 𝑌1(0)
2 0 𝑌2(1) 𝑌2(0) 𝑌2 1( ) − 𝑌2(0)
3 0 𝑌3(1) 𝑌3(0) 𝑌3 1( ) − 𝑌3(0)



4 1 𝑌4(1) 𝑌4(0) 𝑌4 1( ) − 𝑌4(0)
5 1 𝑌5(1) 𝑌5(0) 𝑌5 1( ) − 𝑌5(0)
6 1 𝑌6(1) 𝑌6(0) 𝑌6 1( ) − 𝑌6(0)
19 (Garcia-Gomez, 2022)𝐴𝑇𝐸 = 𝐸 𝑌𝑗 1( ) − 𝑌𝑗 0( )[ ] = 1𝑁 𝑗=1

𝑁∑ [𝑌𝑗 1( ) − 𝑌𝑗(0)]
For a given individual, that individual could be treated ฀ we would have the outcome
if that individual could be treated and the outcome if he could not be treated. The
same if the individual retires or not: the causal effect is the difference.
If we want to estimate the average causal effect or the average treatment effect, we
could just get the average over all these individual causal effects. So, we have the
causal effect for individual one, two, and so on.

The fundamental problem to causal inference and to get a causal effect, is that we
can only observe one of these two outcomes: we cannot observe the same person in
two different states: at the same moment, I am either retired or not. It is not possible
to look at both the states of the world, but we need to think about in which situation
we are.

We want to know what the outcome of those non-observed could be, the
counterfactual outcomes, which are the outcomes that could be observed if the
person was in a different state (we have these gaps in our dataset). We only observe
the outcomes of an individual given his or her current condition.
The goal of the analysis is to try to generate those counterfactuals.

Outcome without
Treatment Outcome with Treatment

Control 𝐸[𝑌𝑖(0)|𝑇𝑖 = 0] 𝐸[𝑌𝑖(0)|𝑇𝑖 = 1]
Treatment 𝐸[𝑌𝑖(1)|𝑇𝑖 = 0] 𝐸[𝑌𝑖(1)|𝑇𝑖 = 1]
20 (Garcia-Gomez, 2022)

If we think about going to the hospital/doctor example, in the data we see the output
of those that did not go to the hospital (the control group), and the output of those



who did go to the hospital (the treatment group). We need to be able to estimate
what could be the expected output of those that did not go to the hospital if they had
gone, and the other way around.

We need to ask ourselves whether our empirical method give us a valid
counterfactual. If we think about the effect of going to the hospital, we can just
compare the mortality outcomes of people who did go to the hospital and those who
did not go to the hospital. 𝐸 𝑇 = 1[ ] − 𝐸[𝑌𝑖|𝑇 = 0]
The effect of going to the hospital is obtained comparing those two. If those that go
to the hospital, or those that retire, or those who go to college, are different
compared to those that do not receive the treatment, do not retire, do not go to
college, then we cannot just use the information from this counterfactual group to
estimate our causal effect.
When there are other observed or unobserved characteristics that influence both the
treatment and y, in other words, our explanatory variable of interest and y, our
method will not give us a valid counterfactual.

If those reasons why it is only due to other observed characteristics that confound
this relation, then we can just add these explanatory variables to our model, and
then OLS with this additional control explanatory variables will give us the causal
effect, the average treatment effect, this right counterfactual.
However, if we also have unobserved characteristics that explain why people go to
the hospital and at the same time why they die, or why people retire and at the same
time their mental health, OLS provides bias estimates ฀ we need to use a different
estimator.

This is another way of thinking about what it means to get a causal effect. We should
always check how the assumptions of the different methods are fitting in our
research. At the same time DAG will help us visualize the assumptions we are making
in our specific contribution.



Applied microeconometrics -
Module 3 - Introduction to
empirical methods: panel data
Lecture 19 (3.1) – Panel data: introduction
Which estimation technique we should use when working with panel data?
To answer this question, we need to know:

● What panel data is
● The notations of panel data
● The distinction in the notation from cross-sectional analysis
● Unbiasedness and efficiency
● Different estimation techniques, including:

o OLS (and the conditions under OLS will be the best estimation technique
with panel data)

● The within effects estimators, which refer to fixed effects, least squared
dummy variables and first differences; we also want to know which
assumption they require and how these estimators solve potential OLS issues

● Random effects and correlated random effects
● How to choose across the estimators
● Definition and implication of attrition for panel data

At the end of this module, we will also introduce difference in differences, which is an
approach that can solve some of the issues that within estimators might not be able
to.

challenges of panel data

฀ We will introduce a set of new estimators, each with their own working and
assumptions
฀ The choice of which estimator to use depends carefully on the topics of bias and
statistical efficiency



฀ With panel data we now have the distinction between time-variant and
time-invariant covariates

After this module we should be able to:
● Describe a panel data set and distinguish it from a cross-sectional
● Understand the assumptions required for each estimation technique and

under which of those they are unbiased and efficient
● Knowing how to select the best a most appropriate estimation technique
● Evaluate and understand the importance of attrition in different panel data

sets

Lecture 20 (3.2) – What is panel data?
In research, data could have different structures:

● Cross-sectional data: the cross-sectional data are those data sets that have
collected data on one observed sample of units at only one point of time.

● Repeated cross-sectional data: in this case the data collected are the of
same type of the cross-sectional data, but on different observed samples and
at different points of time. We are not following the same person, but we are
collecting the same data.

● Longitudinal/panel data: the panel data is a data set that collects the same
data on the same observed sample at different points of time ฀ we will collect
the same data, the same variables on the same people and units over time.

In the following figure we can visualize cross-sectional data:



Figure 1 module 3, lecture 3.221 (Carlos Riumalló Herl, 2022)

We can think of a cross sectional data as a snapshot on time.

Figure 2 module 3, lecture 3.222 (Carlos Riumalló Herl, 2022)

In the case of repeated cross section data (figure above), we are collecting the
same data, so the same variables and the same information, but on different
samples and in different time periods ฀ this could be imagined as two snapshots at
two different people in two different points of time.



Figure 3 module 3, lecture 3.223 (Carlos Riumalló Herl, 2022)

With panel data we collect the same information on the same people over time.

panel data characteristics

A panel data contains repeated observations of the same unit across time.
The data is now characterized by having two dimensions:

● Individual unit dimension ฀ indicates which units we are observing (the unit
could be people, countries, stocks, schools, etc.) ฀ 𝑖 = 1, 2, …, 𝑁

● Time dimension ฀ it gives us information on the period of time during which
the data are collected. It could be years, month, seconds, etc. ฀ 𝑡 = 1, …, 𝑇

Now we can define panel data in two ways:
● Balanced panel dataset: all units are observed in all time periods ฀ we

observe all people all the time.
● Unbalanced panel dataset: in this (more frequent) case the number of

observations vary across individuals ฀ whatever the reason, we are not able to
follow each individual for the entire period of time.

Some of the examples of panel data includes:
● Longitudinal surveys of Ageing (HRS, ELSA, SHARE, etc.) ฀ in this case the data

have been collected on people every two years.



● Administrative tax records ฀ some countries (including Denmark and the
Netherlands) collect annual tax data and make their information available for
research ฀ each person is followed every year.

● Hospital characteristics ฀ in this case units are not people, and in general
units do not necessarily need to be people ฀ in this case hospitals are
observed over a period of a year; we could observe their spendings, the
number of operations they do and so on.

● Financial stocks ฀ we could follow what is happening at a stock in every point
of time ฀ this is a panel data set.

Figure n. 424 (Carlos Riumalló Herl, 2022)

When looking into the data ฀ each observation of our dataset represents one unit
time ฀ it represents a particular outcome of one unit at a particular time set

Looking at the figure n. 4, we can see that the first observation represents the
observation for person 1 at time 1, while the second observation corresponds to
person 1 at time 2, and so on.

So now we have multiple observations per unit, each one in different points of time.



When we are working with panel data, we always have two fundamental variables:
● The identifying unit variable, in our example the variable “person” ฀ indicates

which observation belongs to the same unit ฀ in our example the variable
person contains the number of the ID for the unit we observe (1) ฀ the first five
observations belong to person one because they are identified as such.

● The time variable, in our example the variable “time” ฀ with this variable we
can see which observation belongs to which time frame: in this example we
have observations that go from time one to time five.

The fundamental characteristic of a panel data set is that we now have a series of
observations that belong to the same unit. For each of the person in the panel data
of figure 4, we have five observations in five different time points. In this case the
variable person allows us to identify which observation belongs to each person.

With panel data sets we also have another two types of variables:
● Time-variant variables
● Time-invariant variables

In our example, the variable age is a time-variant variable, as the value of age
changes for each person at each point of time, while the variable male is a
time-invariant variable, as it contains the same value over the whole timeframe in
which we are following people up.

฀ The concept of time-variant and time-invariant might not be absolute, but might
depend on the data set we are using.
For example25 (Carlos Riumalló Herl, 2022), if we are using a survey that collects data
on older people and we have information on things like education, those might not
change for older people, but it could for young people. In the end, the concept of
time-variant and time-invariant might depend on the dataset that we are using.

panel data structure in practice

Whenever we are looking to a variable, there will be variations in its values.
While in the case of cross-section data we already had variations, in the case of
panel data sets we need to distinguish the variation in two parts:

● How much of the total variation is due to variation within units
● How much of the total variation is due to variation between units



As for the within variation, we look at a single individual and we are going to look at
how much the value of a certain variable changes for that individual with regards to
the unit’s mean value for that variable.
฀ The concept of within variation is relative to the unit.

In the case of between variation, we want to know how much variation of the variable
exists between units. In this case we will calculate this by comparing the mean value
across different units.

This analysis of the variation will tell us how much variation is occurring within
individuals (how much that variable changes over time within units), or whether
most of the variation exists between units.
We can ask ourselves: do people change a lot over time in reference to that certain
variable, or is most of the difference due to differences between people for that
variable?
Do the units per se change over time for a given variable or the difference is given by
differences between the individuals?
In the applied part it will be seen how to describe and interpret these information on
STATA.

Lecture 21 (3.3) – Notations
With panel data we also change the way we visualize some aspects of the models
and the definitions.
This is a DAG for a cross-sectional data:



has an effect on ; we have then an unobserved error term that might affect both𝑋𝑖 𝑌
our covariate of interest, and .𝑋 𝑌
We can use the classical OLS notation:𝑌𝑖 =  β0 + β1𝑋𝑖 + 𝑢𝑖
We can write y as a linear function of and and the error term .β0 β1𝑋𝑖 𝑢𝑖
We can add more covariates, there will be only one outcome, defined for a unit and𝑖
in this case there is no time dimension.

In this case using OLS gives us an unbiased estimate on the parameter if theβ1
expected value of the error term conditional on is equal to 0:𝑥
฀ is unbiased ifβ̂1 𝐸 𝑋𝑖( ) = 0
With panel data we have another dimension: time.
How can this influence the DAGs and the type of notations we use?

For each individual now we have multiple observations. In this case we have the𝑖
effect of on at three different points of time, all for the same individual, .𝑋 𝑌 𝑖
In this scenario we also have the error term, which has the dimensions unit and time
as well. The error term not only influence and in one particular time period, but it𝑋 𝑌
can influence the variables for the entire period of observation.

We can think of a DAG for panel data as the cross-sectional diagram multiplied for
all the time periods we have.
This is a simplified version of the DAG, because we can also consider past s: for𝑥
example, having an impact on and vice versa.𝑋1𝑖 𝑌2𝑖



฀ Now we will have multiple ’s that will depend on the time period we observe, and𝑋
now we have an error term that does not only influence and of one time period,𝑋 𝑌
but of all time periods.

panel data notation: decomposing the error

The outcome now is unit and time specific. What is its notation?𝑌𝑖𝑡 = β0 + β1𝑋𝑖𝑡 + 𝑢𝑖𝑡
This is a simplified model: we can always add more covariates and eventually past
covariates (this is called a “lag”). Now the error term, that varies both across unit and
time, can be decomposed in two parts:𝑌𝑖𝑡 = β0 + β1𝑋𝑖𝑡 + 𝑢𝑖𝑡 =  β0 + β1𝑋𝑖𝑡 + α𝑖 + ε𝑖𝑡
Now the error term is distinguished into:

● ฀ in the literature, this component is referred as the unit heterogeneity, orα𝑖
individual fixed effect or unit fixed effect. It is the part of the error term that is
the same for all observations of one unit ฀ is a persistent component and the
same for all observations of a unit. It is also unique to each unit and can
distinguish the units between each other. It does not necessarily have to be
different than zero, but if it exists it is time-invariant in the person ฀ this is the
part of the error term that is time-invariant within units.

● ฀ it is referred as the idiosyncratic error, and it is the time-variantε𝑖𝑡
component of the error term. It can be different for each unit and time period.
We are referring to a part of the error term that is unique for each unit and
time observation and for it we will create this idiosyncratic variation. The
idiosyncratic variation could be equal to zero, but does not have to, and in this
case it will distinguish which types of estimation we can use and which types
we cannot use.

Example26 (Carlos Riumalló Herl, 2022): Let us study again what is the effect of
education on income: with panel data, income (the outcome for and individual at𝑖
time ) would be a linear function of the parameters and and the education of𝑡 β0 β1
the individual at time .𝑖 𝑡



The data set for this example is the annual tax register, that allows us to follow
individuals on an annual basis. From the register we have information on the
education level as well as what type of income they receive.

We have the error term (the error term for individual at time ) that can be𝑢𝑖𝑡 𝑖 𝑡
decomposed in the time-invariant component (the individual heterogeneity ) andα𝑖
in the time-variant component (the idiosyncratic shock )ε𝑖𝑡
When we think about the time-invariant component of the error we think about all
the possible unobserved factors that might influence education and income that are
time-invariant. For example, in this case we could think about genetic material (as
our DNA is time-invariant and it could also determine our capacity to become more
educated or having an higher income). The genetic material makes each individual
different and is time-invariant: it is an individual heterogeneity ฀ it makes each
individual different in a time-invariant way.

We can then think about time-variant components that can influence our model and
that could be shocks on a daily basis. Skills development could be one of these
components: it could change for each individual at each time point, and it could be
based on things like mental health or capacity to work ฀ these could be idiosyncratic
shocks.

Figure n. 527 (Carlos Riumalló Herl, 2022)



In this case we want to see if there is any correlation between income and age.
For this example have been collected data for three people. If we look at the example
without thinking about the errors, we see that income is a linear function of age. At
age 45 individuals have an income of around 23000, at age 46 of 24000 and at 47 of
25000.

If we add the individual heterogeneity, so if we add a time-invariant component of
the error term that make each of these individuals different, we now have a scenario
where the intercept for each individual will be different and will be given by each
individual heterogeneity. In this case, we have that age and income have the same
linear relationship ฀ the distinction now is that the individual heterogeneity will make
the intercept for each individual different ฀ this is what is called a “between
difference” (how different people are between each other).

Figure n. 628 (Carlos Riumalló Herl, 2022)

In this setting we have that the top line is for individual 1, the second for individual 3
and the third for individual 2.

Now we add the idiosyncratic shock, an error term that varies for each individual at𝑖
time ฀ it is a different value for each unique observation𝑡
In this setting we add in the formula:ε𝑖𝑡



Figure n. 729 (Carlos Riumalló Herl, 2022)

We can now see how the actual values get different or get spread out from the lines.
Now our dots are both made up of the individual heterogeneity as well as the
idiosyncratic shock.

฀ Whenever we are talking about the individual heterogeneity, we are referring to the
time-invariant part of the error term that distinguishes units between each other and
the idiosyncratic shock, that distinguishes and is unique to each point and and will𝑖 𝑡
help distinguish the within variation.

We can go further with the notation already seen:

𝑌𝑖𝑡 = β0 + 𝑐=1
𝐶∑ β𝐶𝑋𝑐𝑖𝑡𝑇 + 𝑐=𝐶

𝐶+𝑁∑ β𝐶𝑋𝑐𝑖𝑡 + α𝑖 + ε𝑖𝑡
When writing the model we can distinguish time-invariant and time-variant
variables. In the case of the notation above, we have added two terms:
The sum from to of the (which is the time-variant variable) and the sum𝑐 = 1 𝐶 𝑋𝑇
from to of the (the time-invariant variable).𝑐 = 𝐶 𝐶 + 𝑁 𝑋
฀ This will be important as some of the estimation techniques we will analyze will
exploit some of these variations.



In many cases we will just write down the variables we will be using in the model
without making it clear or distinguishing them as time-invariant or time-variant.
But in the case of this video this equation is meant to show us that we can distinguish
in the model between the two types and decompose the error term.
We also have to remember that some characteristics can be time-invariant in our
data, depending on the population and sample that we are using.

Lecture 22 (3.4) – Unbiasedness and
efficiency
The decision to use one estimation technique over another is often based on
whether an estimation technique is unbiased and efficient.

For this reason we are going to analyze the unbiasedness and efficiency in the
contest of panel data.

An estimator is a method or a technique that researchers use to estimate certain
parameters with a given data.
When we have to choose estimators, we have to consider two properties of interest:

● We have to see if they are unbiased ฀ they are if they will give us a parameter
equal to the true population parameter on expectation.

● We have to see if they are efficient ฀ the estimators are efficient if they give us
precise estimates.

Unbiasedness often relates to the value of the parameter estimated, while efficiency
relates to the standard errors ฀ it influences how confident or not we are on rejecting
the null hypothesis that the parameter is different than zero.

In the case of panel data, unbiasedness builds upon what we have already seen for
cross-sectional data and refers to the lack of correlation between the error term and
the variable of interest. But as we saw in the previous lecture, in the case of panel
data we can decompose that error term into two parts (into the individual
heterogeneity and into the idiosyncratic shock). Therefore, in the case of panel data,
an estimator will be unbiased if both components of the error term are uncorrelated
with the variable of interest:



● must not be correlated with ฀α𝑖 𝑥𝑖𝑡 𝐸 𝑋,  α[ ] = 0
● must not be correlated with ฀ε𝑖𝑡 𝑥𝑖𝑡 𝐸 𝑋,  ε[ ] = 0

In some estimation techniques in the field of panel data some assumptions can be
relaxed, but in the end a panel data estimate will be unbiased if and only if the
individual heterogeneity component and the idiosyncratic shock are uncorrelated
with a variable of interest ( or ).𝑋 𝑌
Failure to do so, unless we can relax those assumption in specific estimation
techniques will lead to a biased estimate.

In the case of efficiency, we have to consider the structure of the error term and how
the error terms are correlated over time and between each other (and over people,
with other covariates).
One example that harms efficiency in OLS from cross-sectional data is
heteroskedasticity ฀ if the error term is correlated somehow with our variable of
interest, we will have heteroskedastic error terms and we will have to adjust for it,
correct it, and finally have precision.
This is not different from the issues we could find in panel data. In the case of panel
data, an estimation technique will be inefficient if there is a structure in the error
terms that we are unable to account for correctly.
If we have inefficient estimators, this will produce incorrect standard errors and we
will need to solve this problem if we do not want to reach incorrect conclusions.
In the case of panel data, when thinking about the structure of the error terms, we
also need to account for the fact that we have two dimensions ฀ not only we have to
consider whether an error term is uncorrelated with the error term of another
individual, but we also have to understand and account if that error term is
correlated within units.

The question that should come to mind when thinking about data structure, is
whether the error terms are correlated or not across time. We will see some
estimation techniques that assume that that is the case, but often is unlikely that the
error terms in panel data are uncorrelated with each other (so that ).𝐶𝑜𝑟𝑟 µ𝑡, µ𝑠( ) = 0
The reason for this is simple: if we go to the construction of that error term, if we look
at how the error term is constructed at time and at time , as shown in the𝑡 𝑡 − 1
following equation, we can see that both of the error terms at time , and at time𝑡

, are constructed and based on the individual heterogeneity:𝑡 − 1
𝐶𝑜𝑟𝑟 µ𝑖𝑡, µ𝑖𝑡−1( )≠0{µ𝑖𝑡 = α𝑖 + ε𝑖𝑡 µ𝑖𝑡−1 = α𝑖 + ε𝑖𝑡−1 



฀ both error terms have a component within them that is the same over time. That
makes it such that then the error terms are likely going to be correlated over time.
This is a part of the data structure, of the error structure in panel data, that we need
to account for future models that we will see. This will determine whether a model
might be efficient or not.

In general, in panel data analysis, efficiency will depend on how the error terms will
be structure. But still, it is likely that the error terms will be correlated with each other
across time: we need to take care of this.

Lecture 23 (3.5) – Pooled OLS
We’ve already seen that OLS is one of the best estimation techniques.
Under which circumstances can we use (pooled) OLS, and what are the challenges
when using it?

Pooled OLS is the estimation of parameters using OLS on data that combines
multiple observations of units in a sample. It is like using OLS but using pool data
(multiple observation for the same unit).
In this scenario, we estimate the following equation:

𝑌𝑖𝑡 = β0 +  𝑐=1
𝐶∑ β𝐶𝑋𝑐𝑖𝑡𝑇 + 𝑐=𝐶

𝐶+𝑁∑ β𝐶𝑋𝑐𝑖𝑡 + 𝑢𝑖𝑡
The outcome for an individual in a time is a linear function of our parameters, the𝑌 𝑖 𝑡
time-invariant variables and time variant-variables and an error term.
The difference between this situation and the one with cross-sectional data, is that
now our data points have two dimensions ฀ we have data for an individual at a𝑖
time .𝑡
In general, pooled OLS is the same estimation done for cross-sectional data ฀ this
estimation will be unbiased under the same assumptions and will have the same
properties as a normal OLS estimation for cross-sectional data.

A difference between pooled OLS and OLS estimation is that a pooled OLS exploits all
data variations including the between and within.



Also the normal OLS exploits all data variations, but with cross-sectional data there is
only a between variation.

The pooled OLS is the Best Linear Unbiased Estimator (BLUE) if the following two
assumptions hold:

1. The zero conditional mean assumption holds (the error term must be
uncorrelated with the variable of interest).

2. There has not to be serial correlation ( ).𝐶𝑜𝑟𝑟 𝑋( ) = 0 ∀𝑡≠𝑠
zero conditional mean assumption

If the zero conditional mean assumption holds it is possible to estimate a parameter
equal on expectation to the true population parameter.
This can happen only if both components of the error term are not correlated with a
variable.
฀ A pooled OLS will give us an unbiased estimate with panel data if we can assume
that the individual heterogeneity and the idiosyncratic shock are uncorrelated with
the variable of interest.
If they are not correlated, if we use an OLS, we will get an unbiased parameter for the
variable of our interest.

serial correlation

Having no serial correlation (or autocorrelation) is the second condition required to
make the pooled OLS the best estimation technique.
If error terms are uncorrelated with each other, then whatever we estimate as a
standard error with an OLS technique will be the appropriate standard error that we
can get.
This means that conditional on , the error term in two different time periods should𝑋
be uncorrelated with itself.

If these the two conditions hold, as well as other assumptions such as having full
ranked data, not having multiple correlation between variables, etc., then, by using
OLS, we will get the best estimates possible. Pooled OLS under these circumstances
will always be the best estimation technique, even in the field of panel data.

However, in the case of panel data, we have two issues to discuss to know if pooled
OLS is the best estimating choice.



endogeneity

Are we in a circumstance where the zero conditional mean assumption holds?
If we are able to assume that the error term is uncorrelated with the variable of
interest, pooled OLS might be the best option and we should test to see if it is also the
most efficient option
But as we saw for cross-sectional data, being able to assume the zero conditional
mean assumption is very unlikely in observational studies: the treatment allocation
(why people have a certain variable), is often correlated with time-variant and
time-invariant unobserved characteristics that also influence the outcome.

The term “endogeneity” means that there is no zero conditional mean assumption ฀
if this is the case, pooled OLS estimates will be biased. So even if there is no serial
correlation, whether there would be endogeneity, pooled OLS are not an estimator to
use, as the estimates will be biased.
If there is endogeneity, the other estimation techniques we choose have to account
for the sources of endogeneity.
As possible solutions, we will see fixed effects and first differences as well as
difference in differences. Also instrumental variables can be considered a solution,
since they can also be coupled with panel data.

serial correlation (continuation)

The second issue we have to face in choosing the pooled OLS as our estimation
technique with panel data, is the possible presence of serial correlation.

In the case of panel data, it is very unlikely that the error terms are uncorrelated with
each other over time, so that 𝐶𝑜𝑟𝑟 𝑋( ) = 0
The reason for this is that each error term for an individual at time , is based on a𝑖 𝑡
common individual heterogeneity that is similar in all observations of an individual:

𝐶𝑜𝑟𝑟 µ𝑖𝑡, µ𝑖𝑡−1( )≠0{µ𝑖𝑡 = α𝑖 + ε𝑖𝑡 µ𝑖𝑡−1 = α𝑖 + ε𝑖𝑡−1 
The consequence is that it is likely that error terms within an individual will be serially
correlated. As this leads to a different structure in the error terms, if we use an OLS,
the standard error that we will get will be invalid ฀ whatever standard error we get it
will be incorrect. This has an impact on the significance and the confidence intervals



obtained. It is possible that estimates may still be unbiased, if the zero conditional
mean assumption holds, but the standard errors will be incorrect.

So, when the estimates are unbiased (as the zero conditional mean assumption
holds) but we have serial correlation, we must opt for solutions that address the
structure of the error term; the one we will see first is random effects (which is
preferred when working with panel data as it addresses the structure of the error
terms).
Another solution is the clustered standard errors (which we will not analyze).

Lecture 24 (3.6) – Fixed effects, Least Squared
Dummy Variables and First Differences
As we saw in the previous lecture, OLS might be biased as an estimation technique (it
often is the case when working with panel data). For this reason, we can also count
on other estimation techniques, that take advantage of the panel nature of the data
to try to address part of the correlation that might be leading to biases.

We are going to study three new estimation techniques:
● Fixed effects
● Least Squared Dummy Variables
● First Differences

These estimation techniques address the correlation that might exists between the
unobserved heterogeneity and the variable of interest.
We will see the intuition behind these estimations, their implementation and the
assumptions required for them to be unbiased. At the end of the lectures, we will try
to understand how to choose between these different techniques.

intuition for FE, LSDV, and FD

The main challenge we can have, as we previously saw, in pooled OLS, is that it might
be biased if the zero conditional mean assumption does not hold, which occurs
when the error term is correlated with our variable of interest.
In the case of panel data this can occur if either the unobserved heterogeneity is
correlated with the variable of interest, or if the idiosyncratic shock is.



In practice we cannot know for sure which is the case. In the case of panel data, we
are able to exploit the multiple observations that we have for each unit, to account
for the correlation that might exists between the unobserved heterogeneity and our
variable of interest.
All three of the methods we analyze will eliminate all of the between variations that
might be the source of this correlation and will only focus on within variations.
That is the reason why these methods are called within effects estimators (as they
only exploit the within variations).

fixed effects method: implementation

The main idea is that we are going to apply a transformation to the data, called time
demeaning, to eliminate the unobserved heterogeneity α𝑖
In essence, this method takes into account the correlation between the unobserved
heterogeneity and the variable of interest by eliminating the unobserved
heterogeneity.
We know the original model: 𝑌𝑖𝑡 = β0 + 𝑐=1

𝐶∑ β𝐶𝑋𝑐𝑖𝑡 + α𝑖 + ε𝑖𝑡
If we now calculate the average over time for each component of the equation (the
between effect estimator), we will have the following equation:𝑌𝑖𝑡 = β0 + 𝑐=1

𝐶∑ β𝐶𝑋𝑐𝑖𝑡 + α𝑖 + ε𝑖𝑡
The average of the unobserved heterogeneity will be the unobserved heterogeneity
itself. Similarly, the average of a time-invariant characteristic will be that time
invariant characteristic itself.
This is important, as by doing the transformation we are now able to eliminate the
unobserved heterogeneity :α𝑖𝑌𝑖𝑡 − 𝑌𝑖𝑡 = 𝑐=1

𝐶∑ β𝐶 𝑋𝑐𝑖𝑡 − 𝑋𝑐𝑖𝑡( ) + 𝑢𝑖𝑡 − 𝑢𝑖( ) ↔ 𝑌̈𝑖𝑡 = 𝑐=1
𝐶∑ β𝐶𝑋̈𝑐𝑖𝑡 + (ε𝑖𝑡 − ε𝑖)

This is done by subtracting the second equation from the first.

This subtraction of the averages is what is called a time demeaning transformation.
In this case the new formula will be such as that our outcome is now a
transformation, where we subtracted each mean for each observation in a unit. The



same will happen for each variable , the unobserved heterogeneity, and the𝑋
idiosyncratic shock. As a result of this transformation, we will have a new model,
given by the outcome of unit at time as a linear function of the transformed𝑖 𝑡 𝑋
variable for unit at time , plus the idiosyncratic shock.𝑖 𝑡
When we did the subtraction (the time demeaning), we eliminated the unobserved
heterogeneity. We are now only left with only time variant characteristics. Each of
these characteristics’ transformed values, represent a deviation from the unit mean:

is the deviation with regards to unit mean.𝑌̈𝑖𝑡
By doing this transformation we eliminated the unobserved heterogeneity ฀ we now
do not care if there was a correlation between the unobserved heterogeneity and the
variable of interest as we have been able to eliminate that unobserved
heterogeneity.

It is important to note that we do not have eliminated the idiosyncratic shock, which
is still in the model.

least square dummy variables method:
implementation

In contrast to the fixed effects method, we now account for the correlation between
the unobserved heterogeneity and the variable of interest by actually estimating a
parameter for each unobserved heterogeneity.
Instead of eliminating that value, we now estimate a value for each unobserved
heterogeneity. In essence, we have the same original model as before:𝑌𝑖𝑡 = β0 + 𝑐=1

𝐶∑ β𝐶𝑋𝑐𝑖𝑡 + α𝑖 + ε𝑖𝑡
Now in STATA we are going to include a dummy variable for each unit in our sample,
equal to 1 if that observation belongs to the unit, and 0 if not.
We now include all of the dummies in our variable and implement an OLS strategy.
By this approach, we do not eliminate the unobserved heterogeneity, but estimate
what that parameter is for each unit dummy. It does not matter whether the
unobserved heterogeneity was correlated with the variable of interest, as including
that heterogeneity as a variable in our model, we are now able to account for that
correlation.
This is often referred to as a fixed effects dummy ฀ we are adding a unit fixed effects
to the model:



𝑌𝑖𝑡 = δ𝑖 + 𝑐=1
𝐶∑ β𝐶𝑋𝑐𝑖𝑡 + ε𝑖𝑡

฀ it is the dummy variable for each unit in the sample.δ𝑖
first differences method: implementation

This approach has a similar perspective as the fixed effects approach: we account
for the correlation between the unobserved heterogeneity and the variable of
interest by differentiating away the unobserved heterogeneity.
This exploits the fact that we have multiple observations per unit and that the
unobserved heterogeneity does not change across time.
We have an example with two time periods (notice that we can also apply this
procedure with infinite time periods):𝑌𝑖1 = β0 + 𝑐=1

𝐶∑ β𝐶𝑋𝑐𝑖1 + α𝑖 + ε𝑖1
𝑌𝑖2 = (β0 + δ0) + 𝑐=1

𝐶∑ β𝐶𝑋𝑐𝑖2 + α𝑖 + ε𝑖2
฀ it indicates how much the intercept changes over time (this will be relevant laterδ0

in the lectures).

If we now subtract the time period 1 from the time period 2, we are able to see that
we are eliminating all of the time invariant variables as well as the unobserved
heterogeneity. Because the unobserved heterogeneity does not change over time, if
we subtract one period from the next, we will eliminate it.
We are left with a first difference model where we now estimate what is the
relationship between a change in the outcome as a linear function of a change in𝑌
the variable and a change in the idiosyncratic shock:𝑋 𝑌𝑖2 − 𝑌𝑖1( ) = δ0 +  𝑐=1

𝐶∑ β𝑐 𝑋𝑐𝑖2 − 𝑋𝑐𝑖1( ) + α𝑖 − α𝑖( ) + (ε𝑖2 − ε𝑖1)
∆𝑌𝑖 = δ0 + 𝑐=1

𝐶∑ β𝑐∆𝑋𝑐𝑖 + ∆ε𝑖
By doing these first differences we have been able to eliminate the unobserved
heterogeneity. Whatever correlation might have existed between the unobserved
heterogeneity and the variable of interest, it is now gone, and irrelevant to us.



With this method we added (as described above). This concept is not included inδ0
the two previous methods.

In STATA we will see that this method gives us the option to include or not .δ0
FE, LSDV, and FD: assumptions

All of these models use within variations to estimate the parameter of interest. With
the various transformation we got rid of everything regarding the between variations.
Any between variations across units will be eliminated ฀ this is the source of the
unobserved heterogeneity.
These methods require a strict exogeneity assumption ฀ this means that FE, LSDV
and FD will be unbiased if and only if is uncorrelated with our variable of interestε𝑖𝑡

in any time period.𝑋𝑐𝑖𝑡
We do not need to know whether the unobserved heterogeneity is correlated withα𝑖
the variable of interest because we can now account for this correlation ฀ this
addresses all observed and unobserved time-invariant sources of bias.

Even if we are not able to collect data on important time-invariant sources of bias, all
these methods will account for it.

FE, LSDV, and FD: challenges

Because FE, LSDV, and FD only produce estimates based on within variation, it would
be impossible for us to estimate the effect of time-invariant characteristics ฀ it is
impossible to estimate parameters for time-invariant characteristics with no within
variations. So, if, for example, the aim of our research is exploring the effect of some
time-invariant characteristics such as gender, education in older people, etc., we will
not be able to use these estimation techniques: STATA will drop these variables from
the model.
In addition to this, because these models only use within variations, they will also be
less efficient, as they get rid of a lot of sources of variations and focus only on within
variations. This is the reason why, if the zero conditional mean assumption holds
(therefore making us able to use the pooled OLS), using a FE, LSDV, and FD technique
will be less efficient than a pooled OLS.



Also now with FE, LSDV, and FD, measurements errors problems are usually much
more important. The reason for this is that, once you get rid of all the between
variation, a greater part of the signal will be the error term ฀ whatever it is left in our
variation that we can actually estimate, the measurement term, might become a
greater share than what we had in the model that used both within and between
variations.

The biggest challenge, which is also the assumption, of these techniques, is that FE,
LSDV, and FD will be unbiased if and only if the idiosyncratic shock is uncorrelatedε𝑖𝑡
with the variable of interest at any time point.𝑋𝑐𝑖𝑡
Whenever we are using these methods, there is a series of questions that we have to
ask us to see if we can assume strict exogeneity or not:

● Where is the within variation of our variable of interest coming from?
● Is it a random variation or is it endogenous?
● Is it driven by other time-variant unobserved variables that could lead to bias?
● Can we assume that the idiosyncratic shock is uncorrelated with our variable

of interest?

If we can assume that the last question is true, these are probably the methods that
we should be using. If not, we have to implement other techniques to address this
sort of biases.
One of these techniques is using an instrumental variable with panel data. Another
one is using difference in differences (will be discussed later). Then we have some
experimental or quasi-experimental methods to account for the source of
endogeneity.

How can we choose between these estimation techniques?
All these methods provide the same result and the same parameter. However, the
final choice should be made relying on the efficiency of each one in a given situation.

comparing FE and LSDV

Both methods provide similar results, and both will be unbiased under the same
assumptions. The only difference between these two, is that LSDV will provide us an
estimate for the unobserved heterogeneity; at the same time, this will require a
major computational effort, as for each dummy we have to estimate a parameter: if
we have a sample with 1000 individuals, we will have to estimate a parameter for



each of those units. The more and more units we have, the more STATA will take to
estimate those parameters. In essence, it is often preferred to choose fixed effect as
it computationally more efficient, unless the aim of our research is to estimate the
unobserved heterogeneity (in this case we have to choose for LSDV; in any other
case FE will be a better choice).

comparing FE and FD

We have a similar situation as the previous one. Both of them provide similar results,
both of them will be unbiased under the same assumptions. The choice we will make
will rely on the structure of the idiosyncratic error. If we have a data set with only two
time periods, then fixed effects and first differences will be identical: they will give the
exact same estimates and the same standard errors. If the data set has more than
two time periods, we have to evaluate the structure of the idiosyncratic error to see
which of these two techniques will be more efficient. If the idiosyncratic error is
serially uncorrelated, the FE will be more efficient. If it is not, then FD will be the best
choice for dealing with that structure.
In practice, people will test both approaches and see whether the results are too
sensitive to the choice of the method. If the results are very sensitive to the choice of
the method, we will have to go into more details and evaluate what type of structure
the idiosyncratic shock has (we will not analyze this matter in this course).

Lecture 25 (3.7) – Random Effects and
Correlated Random Effects
If pooled OLS is biased, we can consider going into the within effects estimation
techniques.
If pooled OLS is unbiased, is there serial correlation in the error terms, or no?
If there is, we should opt for a solution like random effects.

intuition for random effects

When using panel data, pooled OLS may be inefficient if zero correlation occurs
between error terms. If there is a correlation between error terms, at any given time



point in our data ฀ using pooled OLS is inefficient ฀ they will give us incorrect
standard errors and we will have a potential false rejection of the null hypothesis

To address this problem, we can use the structure of panel data to account for the
serial correlation between the error terms that may exist. This exploits the fact that in
panel data we have multiple time periods for the same unit.
We can think about Random Effects as being somewhere between an OLS and a
fixed effects, or first difference estimation techniques.
Random effects will, as pooled OLS, use both between and within variation.
The advantage with regards to pooled OLS will be that random effects accounts for
the serial correlation that might exist in the error term.

The idea on which random effects is based on, is that we use a quasi-demeaning
transformation to eliminate the serial correlation.
We saw the time demeaning transformation, which occurs when we subtract the
average. Now we are doing a similar transformation, called quasi-demeaning.

Looking at the error terms structure in panel data, we can also analyze the serial
correlation as follows: 𝐶𝑜𝑟𝑟 𝑢𝑖𝑡,  𝑢𝑖𝑠( ) = σα2σα2+σε2 , 𝑡≠𝑠
The serial correlation is the share of the total variation given by the individual
heterogeneity.
This formula represents how correlated are the error terms in panel data.

By using this, we can define a GLS transformation that can eliminate the correlation
in the error terms:

θ = 1 − σε2𝑇σα2+σε2
⎡⎢⎢⎣ ⎤⎥⎥⎦

12 = 1 − 1𝑇 σα2σε2( )+1( )⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

12

With 0 < θ < 1
It is important to understand the implication of this formula, not the formula per se.
We refer at the GLS transformation as the . It is the value we use for theθ
quasi-demeaning transformation ฀ once the theta is calculated, we can transform



the model into a quasi-demeaning data that will subtract from each observation in
our sample the quasi-demeaned value:

𝑌𝑖𝑡 − θ𝑌𝑖 = β0 1 − θ( ) + 𝑐=1
𝐶∑ β𝑐 𝑋𝑐𝑖𝑡 − θ𝑋𝑐𝑖( ) + α𝑖 − θα𝑖( ) + (µ𝑖𝑡 − θµ𝑖)

In this equation, the original model is transformed by subtracting the average of
each component, so the average of the outcome for the unit, the average of the
variables for the unit, the average of the unobserved heterogeneity and the average
of the idiosyncratic shock, and we multiply these averages for the quasi-demeaning
factor.
If theta assumes a value equal to 1, we will have the demeaning function we saw
previously for within effects estimation techniques.

For any type of model we do not know the real value of theta, but with the data it is
possible to have a consistent estimate of it.

Once we calculate theta, we can have two scenarios, that will let us know whether
the random effects is closer to a fixed effects or to an OLS.

In the first scenario, if we have a greater variation between units rather than within
units, it means that we need to account to a greater extent for what is driven by that
unit heterogeneity. So, if units are more different between each other than within
each other, we need to account for a lot of that unobserved heterogeneity.
This process should remind us of fixed effects, where we try to eliminate as much as
between variation as we can.
In this case we will see that theta tend into the value of 1:

σα2 ≫ σε2 ⇒𝑇 σα2σε2( ) + 1→∞⇒θ = 1 − 1𝑇 σα2σε2( )+1( )⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

12 →1
฀ The more variation we have between units the more that the random effects theta
will go closer to one.
In that circumstance, the random effects estimator will be closer to a fixed effects
estimation technique than to a pooled OLS. The reason for this is that because
unobserved unit heterogeneity is relatively important, we will try to account for it as
much as possible and eliminate as much as between variation as we can.



A similar finding can happen if the time periods go to infinity ฀ the more and more
time periods that we have, the more the within variation will become important, and
the more we will need to account for it.

𝑌𝑖𝑡 − θ𝑌𝑖 = β0 1 − θ( ) + 𝑐=1
𝐶∑ β𝑐 𝑋𝑐𝑖𝑡 − θ𝑋𝑐𝑖( ) + α𝑖 − θα𝑖( ) + (µ𝑖𝑡 − θµ𝑖)

In an extreme case scenario theta could assume value 1: it is the exact same time
demeaning transformation. Anyway, in practice theta will never assume value 1.

In the second scenario the variation between units is less important. In this case, the
idiosyncratic shock is far more important, as we do not care as much about the
unobserved heterogeneity, as it is a very small share of the total variation.
In this case the theta tends towards 0:

σα2 ≪ σε2 ⇒𝑇 σα2σε2( ) + 1→∞⇒θ = 1 − 1𝑇 σα2σε2( )+1( )⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

12 →0
We are therefore closer to a pooled OLS rather than to a fixed effects model.
In this case, the idiosyncratic shock is much more important, so we can leave as
much as the between variation as we want, as it is less important.

Similarly with the previous scenario, we could think of an extreme case, where the
theta assumes the value of 0. In this case we left with just a regular pooled OLS:

𝑌𝑖𝑡 − θ𝑌𝑖 = β0 1 − θ( ) + 𝑐=1
𝐶∑ β𝑐 𝑋𝑐𝑖𝑡 − θ𝑋𝑐𝑖( ) + α𝑖 − θα𝑖( ) + (µ𝑖𝑡 − θµ𝑖)

But, as before, in practice theta will never be equal to 0.

RE: assumptions

One important characteristic of a random effects model is that, even if it is a panel
data estimation technique, this model will use both the between and within variation
to estimate the parameters of interest. It will distribute the share of how important
each of these are and, in the case where theta tends towards 1, we will eliminate
more and more of the between variation, but, in any case, the random effects model
will always use both sources of variation.



One advantage of this approach is that therefore we can estimate the parameter for
both time-variant and time-invariant characteristics ฀ we are not in the same
situation as we were in fixed effects models where we can only estimate parameters
for time variant characteristics.

Random effects will be unbiased if the error term is uncorrelated with the variable of
interest at any time point; it is the same assumption as for pooled OLS ฀ if pooled OLS
is biased, random effects will be as well, and vice versa.

Both pooled OLS and random effects do not address the potential issues of the
potential endogeneity that might exists.
The only thing that random effects does in contrast to pooled OLS is that it will
correct for the serial correlation that exists in the error term, it will not address the
issue of bias.

correlated random effects (CRE)/mundlak

One extension of the random effects model that has been widely developed in recent
years, is the correlated random effects (also referred to as the Mundlak estimate).
The correlated random effects is an extension from random effects, where rather
than assuming that the unobserved heterogeneity is uncorrelated with the variable
of interest, we will model that relationship.
If we want to use a random effects estimation technique, we need to assume that
the whole error term is uncorrelated with a variable of interest. This implies, in panel
data, that also the unobserved heterogeneity is uncorrelated with the variable of
interest. Correlated random effects works on panel data by, instead of assuming that
unobserved heterogeneity is uncorrelated with a variable of interest, we are going to
model part of that relationship.

We can think that the correlated random effects is somewhere between a random
effects model and a fixed effects model.
We will model that relationship and account for part of the correlation that exists
between the unobserved heterogeneity and the variable of interest.
The main idea behind the correlated random effects is that we can model the
unobserved heterogeneity as a function of the averages of time-variant variables
and include these in the model. Since the average of time-variant variables might
represent partly that unobserved heterogeneity, by including these modelled



unobserved heterogeneity we will be able to account for the modelled correlation
between the unobserved heterogeneity and the variable of interest.

CRE: implementation

For each time-variant variable, we are calculating the average over the units. So, in
this case, for each time variance characteristic, we are calculating the average and
we are going to define the unobserved heterogeneity as a linear function of these
variables and a residual unobserved heterogeneity, as represented by the following
equations:

𝑋𝑐𝑖 = 𝑇−1 𝑡=1
𝑇∑ 𝑋𝑐𝑖𝑡,  ∀𝐶

α𝑖 = α + 𝑐=1
𝐶∑ γ𝑐𝑋𝑐𝑖 + 𝑟𝑖

Once we have been able to model this and calculate the averages for each
time-variant characteristic, we are now going to be able to include it in the random
effects model and have the following equation:

𝑌𝑖𝑡 = β0 + 𝑐=1
𝐶∑ β𝑐𝑋𝑐𝑖𝑡 + α + 𝑐=1

𝐶∑ γ𝑐𝑋𝑐𝑖 + 𝑟𝑖 + ε𝑖𝑡
The outcome for unit at time is a linear function of our original parameters and the𝑖 𝑡
variables we are estimating, plus the modelled part of the unobserved heterogeneity
that is constructed based on the averages of the time-variant characteristics. At the
end, instead of having the full heterogeneity as we had previously, we have a
residual unobserved heterogeneity which is and, as always, the idiosyncratic shock.𝑟𝑖
The hope behind this method is that by including this modelled unobserved
heterogeneity, we can account for a great share of the correlation that would have
existed in the original unobserved heterogeneity and the variable of interest.

CRE: assumptions



Correlated random effects is in this similar to random effects as we are using both
the between and within variations to estimate the parameter of interest. But because
we have been able to model part of the structure of the unobserved heterogeneity,
we are going to account for a part of the correlation that exists between the
unobserved heterogeneity and the variable of interest. In this setting, the correlated
random effects will be unbiased if we are able to assume that the residual part of the
unobserved heterogeneity and the idiosyncratic shock are uncorrelated with the
variable of interest at any point.
When doing this modeling we hope that what is left of that unmodelled unobserved
heterogeneity is a much smaller part and account for less of the correlation that
would have existed between the unobserved heterogeneity and the variable of
interest.
Therefore ฀ correlated random effects is an extension of random effects that starts
to consider for part of that correlation that could exist, but there is still a concern that
whatever is not modelled could still lead to biases.

If we can assume that whatever was left of the error term is uncorrelated with the
variable of interest, then we know that the estimates we would get from a fixed
effects model and a correlated random effects model will be the same for
time-variant variables, so in that circumstance we have that the correlated random
effects will be as good as a fixed effects model. However, the second advantage and
why we might in this case prefer the correlated random effects, is that using
correlated random effects will allow us to include time-invariant characteristics. This
is an advantage from fixed effects, with which we would not have been able to do
this.

As long as we can assume that the way we have modelled the unobserved
heterogeneity leads to the fact that the rest is uncorrelated with the variable of
interest, the estimates we get for a fixed effects model and the estimates for
correlated random effects model would be the same for time-variant variables (

). ฀ using a correlated random effects might actually be better than aβ𝐶−𝐹𝐸^ = β𝐶−𝐶𝑅𝐸^
fixed effects model because it will actually be more efficient by using the between
and within variation.
But in reality, it is likely very difficult to assume that whatever is left in the unmodelled
part of the unobserved heterogeneity is still uncorrelated with the variable of interest.



A second advantage of the correlated random effects, that we will analyze more in
detail in the next lecture, is that correlated random effects is one of the techniques
that we can use to test whether we should use a random effects model or a fixed
effects model.

In the end, a correlated random effects can give us some information about how
likely is it that we can assume that the unobserved heterogeneity is uncorrelated
with the variable of interest (we will see this more in detail in the next lecture).

Lecture 26 (3.8) – Estimator choice
How can we choose the most appropriate estimation technique?
We have already seen how under some circumstances we could choose an
estimation technique over another.

We are going to analyze two methods to choose between a random effects and a
within effects estimation technique, which are both correlated random effects and
the Hausman Test.

These methods are useful to test how likely is that the unobserved heterogeneity is
uncorrelated with the variable of interest. In both methods, if we have evidence that it
is unlikely to hold ฀ we will opt for the within effects estimation techniques (FE, LSDV
and FD). In the case that we are likely to assume heterogeneity ฀ we will opt for a
random effects model as it is more efficient. None of these methods tell us anything
about the possible correlation that might exist between the idiosyncratic shock and
the variable of interest.
These methods only tell us whether we can assume if the unobserved heterogeneity
is uncorrelated with the variable of interest.

Looking at the models we have already seen, we know that FE, LSDV, FD and RE
require, to be unbiased, the idiosyncratic shock to be uncorrelated with the variable
of interest.
If this is not the case, all of these methods would be biased, and we need to rely on
other techniques.
The difference between the within estimation techniques and random effects is that
random effects additionally requires that the unobserved heterogeneity has to be
uncorrelated with the variable of interest.



Therefore, the choice on the estimation technique hinges upon whether we can
assume this assumption.

The two tests can verify how likely it is that this assumption holds. In practice, we can
never verify those assumptions because we can never observe the unobserved
heterogeneity, but both these tests give us some ideas of how likely this assumption
holds.

estimator choice: CRE

As we previously saw, the correlated random effects is an approach by which we
model part of the unobserved heterogeneity as a linear function of the average of
time-variant characteristics:

𝑌𝑖𝑡 = β0 + 𝑐=1
𝐶∑ β𝑐𝑋𝑐𝑖𝑡 + α + 𝑐=1

𝐶∑ γ𝑐𝑋𝑐𝑖 + 𝑟𝑖 + ε𝑖𝑡
We then have a model where we have our outcome for units at time as a linear𝑖 𝑡
function of our parameters , the variables of interest in the original model, and aβ
linear function of the parameter’s gammas and the averages of time-variant
characteristics and the residual part of the unobserved heterogeneity and the
idiosyncratic shock.
The idea behind the correlated random effects model as a choice mechanism, is
that we are going to verify how likely it is that those parameter gammas are all equal
and equal to 0:𝐻0: γ1 = γ2 = … =  γ𝑐 = 0
If we can reject the hypothesis that all the gammas are equal and equal to zero ฀ at
least one component of the time variance averages influences the outcome
After this, if we know that there is one component of the time-variant averages that
influences the outcome and therefore omitting it would lead to bias, is therefore likely
that there are many other unobserved components that also matter and that we
cannot capture.
If we can find something that matters, it is likely that there are other things that
matter that we cannot observe.
So, there will be some parts of the component of our that it is likely to be correlated𝑖
with , and in that case, it reinforces the fact that we need to use the fixed effects𝑥
model.



If we reject the hypothesis and have some gammas are significantly different than
zero ฀ it is likely that other time-variant or other time-invariant characteristic
influences the outcome ฀ we need to account for it.
The only way to account for all time-invariant characteristics is by using the within
effects estimator that will get rid of all between variation.

If we fail to reject the hypothesis, so if we find no evidence that the parameter
gammas are significantly different than zero ฀ at least all of the time-invariant
component we have added, that are the averages of time-variant variables, do not
matter. We can then extrapolate that it is likely that other time invariant components
do not matter as well. This is based on the essence that usually the variables you
observe are often the most important for the model, and therefore the average of
these variables should be more important than anything we do not observe ฀ under
this circumstance we are able to assume that the whole unobserved heterogeneity
is uncorrelated with the variable of interest and therefore, as long as we can assume
that the idiosyncratic shock is also uncorrelated, we will know that random effects
will be unbiased, and will be a much more efficient choice than FE, LSDV and FD.

estimator choice: Hausman test

We are going to run both a fixed effects model and a random effects model,
comparing how the coefficients of time-variant characteristics look like in both
models.

If we find that the time-variant coefficients are very different in the fixed effects
model than in the random effects, we are able to say that the time-invariant
characteristics that we cannot control for in the random effects model but can
control for in the fixed effects model matter. If they matter, it is likely that random
effects is biased. This is a way of testing between both by negating the other.
If the coefficients are very different ฀ whatever we cannot observe in the random
effects model that is time-invariant matters ฀ fixed effects is a more appropriate
estimation technique that will account for all time-invariant characteristics.

But if we run a fixed effects model and a random effects model and we compare the
coefficients of the time-variant variables and find no significant difference ฀ the
time-invariant characteristics, that are not controlled for in the random effects
model, do not necessarily matter or influence the other coefficients. We are able to
assume in this case that the random effects is likely to be unbiased ฀ random effects



will be a more appropriate and efficient technique rather than a fixed effects
estimation technique.

In the STATA application we can see how to develop these two tests with the data
and how to compare and obtain the coefficients.

In this course we must be aware that, unlike in other courses when we can decide
between models by verifying the goodness of fit, in the case of panel data, the
choice of an estimator is based purely on bias and efficiency. For any type of output
we will get, we will always get measures of goodness of fit, and they will be
distinguished in:

● Between 𝑅2
● Within 𝑅2
● Overall 𝑅2

These measures should never be used to choose estimators. Each estimation
technique, pooled OLS, RE, or the within effects variations, will optimize the different
sources of variation ฀ in each case we will get a different value for the three types𝑅2
of variations.
฀ The goodness of fit measures are never to be used when choosing between
estimators and panel data.
฀ The choice should only be based purely on the concepts of bias and efficiency,
nothing else and nothing more.

So, when choosing which is the best and most appropriate estimation technique:
When we work with panel data, the first estimation technique that comes to mind is a
pooled OLS, the best option if we can assume exogeneity (the complete error term is
uncorrelated with the variable of interest) and there is not serial correlation. If these
two conditions hold ฀ pooled OLS are the best linear unbiased estimate, and also
most efficient estimator.
If we cannot assume full exogeneity, the most appropriate choice is using the within
effects estimation techniques. In this case, FE, FD and CRE will be more appropriate
than a pooled OLS, as they account for the correlation that might exists between the
unobserved heterogeneity and our variable of interest. In this sense, the choice
between pooled OLS, FD, or within effects estimation techniques is not based on
efficiency, but on the unbiasedness: FD, FE, LSDV and CRE will be less biased than
pooled OLS.



However, if we are able to assume exogeneity, but we have serial correlation, the
most efficient choice is to use random effects model. Random effects models and
pooled OLS are unbiased under similar situations, but random effects will use the
quasi-demeaning transformation to account for this structure in the error term and it
will be more efficient.

Figure n. 830 (Carlos Riumalló Herl, 2022)

The test we have just seen are useful to see how likely it is for the full exogeneity
assumption to hold. By using the Hausman Test or correlated random effects, we are
able to choose between a random effects model and within effects estimation
techniques.

Again, in practice it really difficult to use pooled OLS as it is extremely unlikely to have
no serial correlation when working with panel data.

Lecture 27 (3.9) – Attrition
The data structure in panel data can be balanced or unbalanced. When data is
unbalanced (for some reason we are not able to follow people up for the whole



amount of time), it is important to understand why we are missing some information,
as this could affect the validity of our analysis.
Attrition ฀ the loss of follow up of people in a panel data survey.

attrition and item non-response

Panel data are not always complete, and in this case, they are unbalanced. There
could be two reasons for this:

1. Attrition ฀ unit dropped from the sample (the individuals that were present at
the start of the research project might not stay until the end, or maybe they
might start later than the beginning of the research). There could be many
reasons for dropping from the sample:

o We could not find the individuals, as they could have moved.
o Death (relevant for aging surveys).
o People might refuse to remain in the sample, for whatever reason.

Attrition not only is an issue for samples that follow people up; if we are
following up a hospital, if It would go over bankruptcy, it would not be possible
for us to follow it up.

2. Non-response ฀ individuals might not want to respond to certain questions.
This could have occurred more prominently in cross-sectional data, when we
had missing answers. But. We could also have this issue with panel data.

Attrition and item non-responding are challenging in panel data as we need to
understand the source and the reason of that attrition or of the item non response.

Is the incompleteness missing at random or is it a selected sample?

In the case of attrition and in the case where we are following people up over time,
are the people that are refusing to answer the surveys of a particular nature or are
they just a sample of the population?
If unhealthier persons, for example, start dying more frequently in a longitudinal
aging, then the sample that we are being left off with is a healthier sample, and the
following analysis could be biased because of that. Another issues that can happen
in panel data that affects both item non-response and attrition, is that individuals
might modify their behavior and reporting across waves.
Because we are collecting data over time and we are serving the same individuals or
firms over time, there might be some learning effects or gaming as to which question
answer. One example of this from the aging survey is that there are cognitive



questions that are asked of individuals to measure their cognitive capacity (for
example individuals are asked to count back from a hundred to one) on seven units
intervals. The first time people are faced with the challenge they find it very difficult,
but the second time they follow the survey, they might have an easier time because
of their experience ฀ this is the learning effect.
This is important to keep in mind for panel data analysis, as for certain questions
there might be a learning effect that biases the measures of variable towards
upward or downward.

Many of the longitudinal surveys are quite long, some time they take some hours. If
people understand how to answer the survey in order to make it faster, they might
actually game the responses, they might give you the responses that make it faster
to answer or quicker to end.

Another side of learning effect which refers more to panel conditioning, is that
individuals might change their behavior because they belong to a panel. For
example, if we are doing a health longitudinal survey, we might be giving information
through the questions that makes people change their behavior. For example, if we
an individual a lot about healthy food, healthy lifestyle or sports, they might actually
modify their behavior after the survey because we have been talking about that a lot.

All of this also combines into affecting the representative of the sample. Whenever
we are working with panel data and an issue of attrition or item non-response is that
the sample we are working with might change over time. We have to reflect about
the representativeness of the sample.
In some cases, the sample can become very different to the population because we
might lose some particular people.
This is a concern if and only if at the beginning we started with a representative
sample. That might not be the case, and in that scenario, this might not be an issue.

testing for attrition

Whenever we are working with panel data analysis we need to understand if the
attrition that is occurring is random or not. We have three methods to test if attrition
is occurring in the sample and if it might not be random. These methods are based
on the different construction of an indicator variable. They are the following:

1. We construct one variable that will assume value 1 if that unit is available in all
waves, and 0 if otherwise.



2. The second method will be based on whether the unit is available in the next
week or not.

3. This method is a count of the number of waves that an individual is present.

฀ Not all of these methods can be used with fixed effects.

Method 1: All waves

With the first method (the all waves method) we are going to create, for each units in
our sample a binary indicator whether that unit was present in all the waves or not. In
this case, an indicator variable for unit at time will be equal to 1 if that unit was in𝑖 𝑡 𝑖
all waves or zero otherwise.

𝐼𝑛𝑑𝑖𝑡 = {1 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑙𝑙 𝑤𝑎𝑣𝑒𝑠 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
As we are creating a value that is the same whether the unit was in all waves or not,
the value for the indicator variable for unit at time 1 will be the same as the indicator𝑖
variable for unit at time 2 and so forth until time T:𝑖 𝐼𝑛𝑑𝑖1 = 𝐼𝑛𝑑𝑖2 = … = 𝐼𝑛𝑑𝑖𝑇
฀ This indicator variable has no within variation ฀ this is a method that cannot be
used with the within estimation techniques

Once we created the binary indicator, we have to run the model that we intend of
running including the estimation technique that we think we will run and we are
going to include the indicator variable as an additional covariate.

In the end we will have to interpret the correlation of that indicator variable with the
outcome. In many cases attrition will happen anyways in our study, but, if we are
able to find out that the indicator variable is significantly correlated with our
outcome, this implies that attrition is not at random ฀ there are certain groups of the
population that are falling out, or dropping from our sample, and that might lead to
bias.

In any type of discussion concerning attrition, it is not enough to just say that missing
is not at random or that attrition is not at random. We need to discuss and explain
why the population that is dropping out could influence the outcomes and the
results that we find afterwards. If we are looking at an example where we are
evaluating the effect of health on income and we find that our indicator variable is



correlated with income (lower income people fall out of the survey), it is logical to
think that if lower people are falling out of the survey and they are also those that are
unhealthier, then the actual relationship we find with our data is going to be on
downward biased estimates. This is because the people left in the sample are
wealthier and healthier.

Method 2: Unit is available next wave

The second method relies on another idea. It follows the same first step:

𝐼𝑛𝑑𝑖𝑡 = {1 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑤𝑎𝑣𝑒 𝑡 + 1 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
This indicator variable will therefore change over time ฀ the indicator variable for unit

at time 1 will not necessarily be equal to the indicator of unit at time 2. If, for𝑖 𝑖
example, a person drops out at wave three, the indicator at time 1 will be equal to 1,
but the indicator at time 2 will be equal to 0.
Having a potential within variation is the only method of the three that can be used
with fixed effects or within effects estimation techniques.
Steps 2 and 3 are the same in the method 1.

Method 3: Number of waves

We create a new indicator variable which is going to be a number of continuous
waves where a person was present:

𝐼𝑛𝑑𝑖𝑡 = 𝑡=1
𝑇∑ 𝐼(𝑊𝑖𝑡 = 1)

In this case, the indicator variable for the unit at time will be equal to the number𝑖 𝑡
of waves that we can observe that person. In the case of a person that was in our
survey for three time periods, this indicator variable would take value 3, if it is a
person that was in the survey for five time periods, would take value 5. That value will
remain the same within a unit ฀ the indicator variable for unit at time 1 is the same𝑖
as the indicator variable for unit at time 2 and so on.𝑖
Therefore, there is no between variation ฀ it is a method that cannot be used with
within effects estimators.

Steps 2 and 3 are the same as previously.



Lecture 28 (3.10) – Introduction to
Difference-in-Differences
One of the challenges behind a FE, LSDV and FD models is that they are only
unbiased if and only if the idiosyncratic error is not correlated with the variable of
interest at any time point.
Where is the within variation coming from? Is that change in that variable random or
is it endogenous? Are there time varying unobserved variables that influence our
treatment?

All these questions are useful to assume or not if the idiosyncratic shock is
uncorrelated.
In the DiD we will use a quasi-experimental situation to compare two groups, a
treatment one and a control one.

By comparing the groups over time, we will get an unbiased estimate if we can
assume that all unobserved time-varying changes are common to both groups. So,
if for the exception of our actual treatment, all other changes that could occur over
time are common to both groups, it is irrelevant whether we can observe them or
not, because a DiD estimation technique will address them and give us unbiased
parameters anyways for the treatment.

The DiD complements the methods we saw in panel data as it accounts for
unobserved time-varying changes that might lead to bias.
However, a DiD is not exclusive to panel data, and we can do it with repeated cross
sections as well. The main idea behind DiD estimator is that we can use these two
comparison groups to differentiate out any sort of bias that is constant and common
for those both groups.
Even if the sources of bias change over time, as long as they are the same for the
treatment and control group, we can differentiate out and get the causal effect of a
treatment.

DiD is often referred to as a quasi-natural experimental design, as it often exploits the
rolling out or the implementation of a particular policy.
We have a population of interest that is then split into two:

● A treatment group that will receive a treatment later on.
● A control group that will not receive the treatment.



The definition of treatment groups is based on policy design. For example, we could
have income tax credits that are only given to single mothers, poverty benefits that
are only given to people below a certain income, etc.

After the distinction of the two groups, we have a pre-intervention period where we
are going to have the data of our outcome. In this phase, neither the treatment
group nor the control group are being given the treatment.
Then there is the intervention phase, and it is when the benefits are starting to be
given out.
Then there is the post intervention phase, where we are going to collect data on our
outcomes or other variables. Now the treatment group will actually receive the
treatment and the control group will not.

So we are going to follow the treatment and the control group, before the actual
treatment start to take place and after it has taken place.

Figure n. 931 (Carlos Riumalló Herl, 2022)

We can visualize this. We have two time periods and two intervention or treatments
that starts to take place between the two time periods. On the y axis we have our
outcome of interest.



What is the effect of the treatment on the outcome?
We have the treatment and the control group. At the bottom we can see the trends
to the control group before and after the intervention. At time period 1 we have the
outcome of the control group before the intervention, and at time period 2 the
outcome of the control group after the intervention.
In the case of the treatment group (we can visualize it with the line above), with the
black line we can visualize what happens to the treatment group. We have the
outcome of the treatment before the intervention actually takes place and we have
the outcome of the treatment after the intervention has taken place.
If we were only seeing this line without comparing with the control group, one could
conclude, incorrectly, that the increase in the outcome was only due to the
treatment. We know that if there is some reason why people are being treated, the
line could be biased, so people in the treatment group could have seen their
outcome increased in any case.
DiD incorporates the control group that gives us what the trend of the treatment
group would have been in absence of the treatment. The trend of the line of the
control group is the same that the line of the treatment group would have if they did
not take the treatment. Using this information, we can calculate what the outcome
should have been for the treatment group in the second time period, in a
circumstance where the intervention would have not taken place. Then any
difference in the actual value we observe that is with the intervention and that
counterfactual value that is given by the information in the control group, reflects the
DiD estimate.

If we can assume that the control group is a valid counterfactual group, then this
simple comparison of the outcomes before and after the intervention and between
the treatment and control group will give us the causal effect of that intervention on
our outcome.

This is shown by the following equation:

𝐷𝑖𝐷 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 = 𝑌𝑇2 − 𝑌𝑇1( ) − (𝑌𝐶2 − 𝑌𝐶1)
In this equation we compare the outcomes for the treatment group before and after
the intervention against the difference in outcomes of the control group before and
after the intervention. This is the reason why this model is called
Difference-in-Differences: we estimate the difference between the differences we
observe in the two treatment groups.



DiD: assumptions

The assumption for the DiD to work, so that the control group is a valid counterfactual
trend for the treatment group, is that the correlation between the idiosyncratic error
and any time-varying variable in our treatment of interest is constant. If the
correlation is constant, by comparing before and after and between groups we can
eliminate the source of bias.
This assumption implies:

● If there is constant bias, the trend of the control and the treatment group
should be similar in absence of the treatment. This is called the parallel trends
assumption/constant bias assumption. It can be seen in late terms as saying
that there are no other factors that will change differentially over time for the
treatment group relative to the control group that would impact the outcome.
This is an assumption, and we cannot verify whether the treatment of the
trend of the treatment group in absence of the treatment would be the same
as the control group because we cannot observe that. There are ways to test
how likely this assumption holds. In these cases, if we have data more than
one time period of data for the pre-intervention phase, we can observe
whether the trends before the intervention were similar before the treatment
or the control. If we can say that over time, before the intervention, the trends
were similar, it is likely that the trends would have remained similar going
forward. Therefore, any deviation from the trend can only be attributed to the
intervention that has now taken place.

● The units (the treatment and the control group) are stable. This means that
there is not a relevant interaction between the treatment and control groups ฀
there is no spillover between the treatment and the control groups. If
receiving the treatment influences the behavior and responses of the control
group, then there will be a violation to the constant bias, as the control group
will change in a differential way to the treatment group.

This condition cannot be tested in our implications, and we only need to discuss why
treatment and control groups are relatively independent.

DiD: advantages (and disadvantage)

The DiD estimation has a set of advantages:
● If coupled with panel data, we can account for all time-invariant unobserved

factors that differ between the treatment and the control group. As we saw



with the within effects estimators, using a DiD with individual effects will also
account for all time-invariant factors, whether they are observed or
unobserved.

● The advantage of the DiD with regards to the within effects estimators, is that
DiD can also account for all time-varying unobserved factors that are the
same for the treatment and the control group, even if do not observe them. In
this situation, if we have changes that we can observed but that happened
simultaneously for both the treatment and control group, even if they are
correlated with the outcome, it will not influence our estimates because we will
be able to eliminate that with the DiD technique.

The only drawback for the DiD estimation technique is that cannot account for
time-varying unobserved factors that are different between the treatment and the
control group. If there are changes that are different for treatment and control
groups and that are unobserved and influence the outcome, then it is impossible for
us to distinguish how much of the change in the outcome is due to our actual
intervention or to these other changes.

This implies arguing why there are no other concurrent events with our intervention
that would be different for the treatment and the control group.

Applied microeconometrics -
Module 4 – Introduction to
empirical methods: Binary data
Lecture 29 (4.1) – Binary data: Introduction
For this module we will focus on the use of public transportation32 (Garcia-Gomez,
2022).

Examples of binary dependent variables
Binary dependent variables are common in many applications of Behavioural
Economics, Health Economics, and so on. We can think about models to know



whether individual participate in the labour market (if they are employed or not,
whether they work full time or part time or whether an individual is retired or not).
There are also some examples in the field of health and healthcare: if we are
interested in estimate the determinants of an existing chronic condition, or whether
an individual has any chronic condition, whether they had been visited by doctors or
not, whether they have been to the hospital.

In all these examples we can start noting that the dependent variable has always
two possible options.

More examples could be:
Does an individual smokes or not? What are the effects of changes in taxes on the
probability that someone smokes? And if is it provided some incentives for someone
to exercise or not? Drink or not?
Why do some people become entrepreneurs?
What is the effect of their parental background in becoming an entrepreneur?
If someone uses public transportation or not, or if he uses a bike or not.
To answer these questions, the dependant variable could also either be yes or no, so
1 or 0.
If we want to understand if a firm is innovative and whether new policies provide
incentives for firms to innovate, we can be interested in the mode of transportation.

If we reflect on people choices and on how they make decisions under uncertainty,
providing our subjects with a risky and a safe option, and we want to see whether the
way in which we show the information has an effect on the probability that that
person choose the risky or the safe option.

In all these examples we can look at the dependent variable (the one we want to
explain) and define it as a dummy variable. So, it will take value 1 if, for example, the
individual participates in the labour market, if another individual has a chronic
disease, and so on, and 0 in the other case.

We focus on the use of public transportation, using the Dutch Mobility Survey (the
2010 survey). The sample is composed by 3000 individuals. The dependant variable
is ptuse, and it assumes value 1 if the individual uses public transportation, 0
otherwise. As explanatory variables we have a dummy variable (urban, it assumes
value 1 if the individual lives in an urban area and 0 otherwise), and a continuous
variable (for age; individuals’ age can also be divided into four categories: age 0 to
19, age 20 to 39, age 40 to 59 and 60 plus).



Figure no. 133 (Garcia-Gomez, 2022)

In the figure above we can find various information about the dependent and
explanatory variables.

The minimum and the maximum are useful to do some cleaning because we expect
them to have a minimum of 0 and a maximum of 1.

The mean of the binary variables it the proportion of 1’s in the data set. So, for
example, if we look at the probability of using public transport, 94% of the individuals
in the sample use public transportation.

The average age of the respondents is 38.7 years.

How can we estimate the models with binary outcomes? Later we will see that we
can use the linear regression model, the ordinary least squares, and specific
non-linear models that accounts for the specificities of this kind of variables.

Lecture 30 (4.2) – Linear regression model for
binary data (LPM)
In a linear regression we assume that the dependent variable y is a linear function of
the explanatory variables and :𝑥1 𝑥2

𝑦 =  β0 + β1𝑥1 + β2𝑥2 + 𝑢



If the zero conditional mean assumption holds, so if (which means that𝐸 𝑥1, 𝑥2( ) = 0
the expected value of the error conditional on and is equal to 0), then using the𝑥1 𝑥2
expected value of y conditional on and , the linear function can be translated as:𝑥1 𝑥2

𝐸 𝑥1, 𝑥2( ) = β0 + β1𝑥1 + β2𝑥2
What does this imply when the dependent variable assume value 0 or 1?
The expected value of y is equal one times the probability that y is equal to one plus
zero times the probability that y equals to zero:

𝐸 𝑦( ) = 1× Pr 𝑃𝑟 𝑦 = 1( ) + 0×𝑃 𝑦 = 0( ) 
Clearly, , so this means that:0×𝑃 𝑦 = 0( ) = 0

𝐸 𝑦( ) = 1× Pr 𝑃𝑟 𝑦 = 1( ) 
The expected value of y is the probability that .𝑦 = 1
The linear probability model means that:

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = β0 + β1𝑥1 + β2𝑥2 
So, the probability that y equals 1 is a linear function of and .𝑥1 𝑥2
When we have only a continuous dependent variable (and this is not the case) we
only have one y and one x variables and x could be any observed value any
individual in our population. We could then fit the following line:

Figure 234 (Garcia-Gomez, 2022)



And if the dependant variable is not continuous but binary instead?
There are not values between 0 and 1 (as people either use public transportation or
not).
The OLS regression will fit a line as before:

Figure 335 (Garcia-Gomez, 2022)

This already evidences one of the drawbacks of using a linear probability model in
the case of binary outcomes: from the fitted line we either get values larger than 1 or
smaller than 0, but it is impossible to have either a larger probability than one or a
negative one.

Looking at the example on the use of public transportation:

Figure 436 (Garcia-Gomez, 2022)

94% of the individuals in the sample use public transport. The average age is 38.7
years and 59% of the respondents live in an urban area.



We estimate a linear regression model, we get the ordinary least square estimators,
and we proceed in the same way we have seen in the other modules.

Figure 537 (Garcia-Gomez, 2022)

Now it is important to be cautious about the coefficients’ interpretation: we have to
think in the units of our variables. The explanatory variable urban, is a dummy, so it
will always be interpreted compared to the reference category. Age is a continuous
variable, in years. But what about ptuse?
In this case the dependent variable is a probability, and the units of probabilities are
percentage points. Looking at the estimated probability of using public
transportation, as we used the coefficients before:

𝑃𝑟̂ 𝑢𝑟𝑏𝑎𝑛, 𝑎𝑔𝑒( ) = 0. 8971152 − 0. 0116806. 𝑢𝑟𝑏𝑎𝑛 + 0. 0013389. 𝑎𝑔𝑒
So, we could get predictions in the same way as the other modules with OLS. In this
case we will have the prediction of the use of public transportation.

If we interpret the coefficient of age, we can see it is in percentage points. So, we
have to multiply it by 100, and then we can see that as an individual grows older, for
every additional year of age, the probability of using the public transport increases
by 0.1 percentage points, ceteris paribus (if the zero conditional mean assumption
holds, else we could say “keeping urban fixed”).
As we did before, we can also see that age is statistically significantly different from 0
at a 1% significance level, looking at either the t-statistic or the p-value.
Urban is a dummy variable, so to interpret its coefficient we need to compare it. The
probability of using the public transport is 1.16 percentage points lower for an



individual that lives in an urban area compared to an individual non-living in an
urban area, ceteris paribus, or keeping age fixed.

What is the constant telling us? It tells us the expected value of public transport use
when all the x’s are equal to zero (so when the individual does not live in an urban
area and the individual has an age of 0). But is this meaningful? Are there people
that do not live in an urban area? Are there individuals with zero years of age? In our
examples, we know that there are people living in rural areas and that there are
individuals with 0 years of age. So, 89.7% of those that live in a rural area with zero
years of age use public transport (which is the same as saying that the probability of
using the public transport is 89.7 percentage points).

If we use this model, we get the predicted probability and then we can plot the
predicted probability against age. We have then two fitted lines:

Figure 638 (Garcia-Gomez, 2022)



This is because we have the dummy variable urban that can assume value 1 or 0. As
we have seen before, we get predictions higher than 1: these values would refer to
very old individuals, but we are predicting a probability of using public transportation
larger than one, which is impossible.
And now we do not see probabilities below 0. Is there something wrong with the
model? No. It is not true that we always get prediction larger than one or below zero,
we just may get them.
In general, when the sample mean is very high, in this case it is close to one, we are
going to get predictions above one, but it is very unlikely that we will get predictions
below zero.
On the other hand, when the sample mean is very close to zero, we will get
predictions below zero, but hardly we will get predictions above 1.
When the sample mean is around 0.5, it is quite common not to get predictions that
are larger than one or below zero.

This is one of the main disadvantages of using the linear probability model. One of
the advantages, is that it is really easy to interpret: we know the magnitude of effect
just by looking at the coefficients.

Lecture 31 (4.3) – Nonlinear Models for Binary
Data
We are going to analyse models that will not have predictions larger than one or
below zero.
We will focus on:

● The logit model.
● The probit model.

The main problem from the last lectures is that when we run a regression with a
binary dependent variable, we cannot have predictions outside the interval between
0 and 1.
Our objective is to avoid these larger predictions, and at the same time we want that
the effect of x on the probability that it is 1 or 0, so on its tails, decreases as we get
closer to these two limits.
This is what is done by and S-curve.



Figure 739 (Garcia-Gomez, 2022)

Starting from the observed values, if we plot the distribution of the predicted
probability that y is equal to 1 conditional on x, we see that this curve is always
between the interval [0, 1]. As it increases, so as we are closer to one, an additional
unit of x has a smaller effect on the probability compared to an increase in one
addition unit of x in the middle of the curve.

This particular S-curve in the graph above is for a case where x has a positive effect
on the outcome. If we would have a negative effect, so that when x increases, the
probability decreases, we would have an inverse S-curve. In this case, with low
values of x we are closer to y and as x increases our S-curve tends to zero.

For the S-shape curve we have non-linear binary models: we model this probability
as a function of and , instead of having a linear function:𝑥1 𝑥2

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = 𝐹 β0 + β1𝑥1 + β2𝑥2( )
There are various options for the F functions. There are only two conditions we need
to impose:

1. F(.) is defined in such a way that is impossible to get predictions outside [0, 1],
so it is 0<F(.)<1.

2. F(.) has always an S-shape.



The most common models that satisfy these conditions are the probit and the logit.

Probit and logit models
The probit model is defined as:

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = Φ β0 + β1𝑥1 + β2𝑥2( ) 
With which is the cumulative distribution function of the standard normalΦ .( )
distribution we know from other statistics courses.

The logit model is defined as:

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = exp𝑒𝑥𝑝 β0+β1𝑥1+β2𝑥2( ) 1+exp𝑒𝑥𝑝 β0+β1𝑥1+β2𝑥2( )  
When we talk about these models, we talk about latent variable models.

Latent and observed variables
We call a latent variable y*. For example, when we think about the probability of
someone using or not the public transport, this could be some sort of latent
propensity of someone to use the public transport. Maybe some people, because of
their preferences, are more likely to use the public transport, while others less. We
can think as this unobserved latent propensity as a sort of continuous variable that
goes between minus infinite and plus infinite.
The same applies if we are thinking about someone that has a chronic condition or
not, as we could have some sort of underlying health. Then after a given threshold,
the person has a chronic condition because we cannot really observe this latent
health, as could be a continuous that goes from minus infinite to plus infinite.
So, these kinds of variables are latent variables, and we do not observe them.

Figure 840 (Garcia-Gomez, 2022)



We observe this other variable, that only takes value zero and one (when the latent
has crossed a given threshold that we set at zero for convenience and it take value 0
otherwise).

Figure 941 (Garcia-Gomez, 2022)

We have an underlying propensity to use public transport when this underlying
propensity is large enough (so, when it is above 0) we use the public transport, while
when it is below zero we do not use it.

So, y* is a latent variable and y is what we observe. The relationship between these
two variables is y=1 when y*>0, and 0 otherwise.

With this relationship we can express this so then we see that this is a continuous
variable. So, then we can express the latent as linear function of and and the𝑥1 𝑥2
parameters:

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = Pr 𝑃𝑟 𝑥1, 𝑥2( )  
The observed variable is equal to 1 when the probability of the latent is larger than 0.

If we assume that the errors follow a normal distribution, then we have a probit. This
means that this probability that the latent is larger than zero is equal to the Φ
function of and :𝑥1 𝑥2

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = Pr 𝑃𝑟 𝑥1, 𝑥2( )  = Φ β0 + β1𝑥1 + β2𝑥2( )
This is the reason why we use this function, and there is a similar relationship when
we use a logit model.



Lecture 32 (4.4) – Estimation of Nonlinear
Models for Binary data
How can we estimate nonlinear models for binary data? We will focus on how
maximum likelihood estimation works (it is the method used to interpret the
coefficient in probit and logit models), and how we can (or not) interpret the
coefficients in the logit and probit models.

Maximum likelihood estimation
First of all, we must define the density function of y. The density is the probability that
y takes certain values (in this case 0 or 1).
The density function is the following:

𝑓 𝑥1,  𝑥2( ) = 𝐹 β0 + β1𝑥1 + β2𝑥2( )𝑦⎡⎢⎣ ⎤⎥⎦ × 1 − 𝐹 β0 + β1𝑥1 + β2𝑥2( )1−𝑦⎡⎢⎣ ⎤⎥⎦,    𝑦 = 0, 1
Once we have defined the density function, we can define the log-likelihood
function for observation i:

log 𝑙𝑜𝑔 𝑙𝑖 β0, β1, β2( ) = log 𝑙𝑜𝑔 𝑓 𝑥1𝑖, 𝑥2𝑖( )[ ]  
For every individual in our sample, we can define the log-likelihood, which is the log
of the density function.
We do this for every observation in the sample; then we can do the log-likelihood
function across all observations:

log 𝑙𝑜𝑔 𝐿 β0, β1, β2( ) = 𝑖=1
𝑛∑ log 𝑙𝑜𝑔 𝑙𝑖 β0, β1, β2( )  

We obtain the estimated parameters by maximizing the . So,β0, β1, β2 log 𝑙𝑜𝑔 𝐿 β0, β1, β2( )
the maximum likelihood estimator maximizes log-likelihood function to obtain the
estimate coefficients .β̂0, β̂1, β̂2
Maximum likelihood estimation graphically
With OLS we have a formula that minimize the sum of the squares of the residuals.
Then we apply this formula to get the estimated coefficients. In maximum likelihood
estimation we do not have a formula to do this, but we have an iterative procedure.



Figure 1042 (Garcia-Gomez, 2022)

This could be a representation of the log-likelihood function. We start from the
intersection between the curve and the y axis. Then with a numerical procedure we
can find the value of that maximizes the log-likelihood function. We start at 0 andβ
then, in incremental steps that Stata computes (we see Step 0, Step 1, Step 2…), we
reach the maximum. Once we are there, at , we know that this is the estimatedβ̂𝑀𝐿
coefficient that we could get from maximum likelihood. This is our estimated
coefficient for the variable of interest.
We don’t have a formula, but we do it in steps.

Example PT use Probit
For this example, we use a probit model. In Stata we get:

Figure 1143 (Garcia-Gomez, 2022)



Stata will always give us the log-likelihood, which will always be negative, because
the log of density is always negative since the density is always between 0 and 1 and
the log of something between 0 and 1 is negative. So, a higher log-likelihood value is
closer to zero, while more negative values are worst likelihood functions. We can
compare models through their log-likelihood, but the value per se is not telling us
anything.

In this example we cannot interpret the coefficients as they are in units of the latent
variable. We do not know the units of the latent variable, so we need to operate some
transformations to interpret those coefficients in percentage point (the units of
probability).
We can still interpret the signs of the coefficients: if a variable has a negative
coefficient, then we know that this variable will decrease the probabilities of the
outcome (in the example, people who live in an urban area are less likely to use
public transport than people who like in a rural area, ceteris paribus, while for age the
likelihood of using public transport increases with age, ceteris paribus).
We can also look at the significance and say whether these associations/effects are
statistically significantly different from 0 or not, in order to use these as reference
values.

Predicted probability

Figure 1244 (Garcia-Gomez, 2022)



We do not get predictions above 1 or below 0, and the effect gets smaller as an
individual gets older (in this example). And this latter fact is exactly what we wanted
(we wanted the effect to be smaller as we are approaching the 1 or the 0). The curves
are not parallel, but we will discuss it later.

Lecture 33 (4.5) – Interpretation with Graphs
How can we interpret the effects of a binary data model using graph?
We are interested in interpreting the size of the estimated effect using graph for both
categorical and continuous variables.
We will continue to use the example in which we are interested in the effect of two
explanatory variables:

● A dummy variable that assumes value 1 if the individual lives in an urban area
and 0 otherwise.

● A continuous variable that is age in years.

We are interested in the effects of these two variables on a binary outcome, the use
of public transportation, that takes value 1 if the individual uses public transportation
and 0 if not.
We model this probability as a nonlinear function of and . The functional form of𝑥1 𝑥2
this function depends on whether we use a probit or a logit model:

Pr 𝑃𝑟 𝑥1, 𝑥2( ) = {Φ β0 + β1𝑥1 + β2𝑥2( )  𝑖𝑛 𝑝𝑟𝑜𝑏𝑖𝑡 𝑚𝑜𝑑𝑒𝑙 𝑒𝑥 β0+β1𝑥1+β2𝑥2( ) 1+𝑒𝑥 β0+β1𝑥1+β2𝑥2( )   𝑖𝑛 𝑙𝑜𝑔𝑖𝑡 𝑚𝑜𝑑𝑒𝑙  
Once we estimated these models, so once we get the estimated coefficients β0,  β1,  β2
, we can obtain the predictions and then we can plot these predicted probabilities
against .𝑥2
The graphs are useful to understand how we can get the estimated effects. Actually,
we could get the exact numbers, obtaining what are referred to as the marginal
effects of and on the probability that y is equal to 1, conditional on and .𝑥1 𝑥2 𝑥1 𝑥2
For this example, we will use a logit model:



Figure 1345 (Garcia-Gomez, 2022)

We cannot interpret the magnitude of these coefficients, but only whether they are
positively or negatively associated with the probability that someone uses public
transport (if the coefficient is negative, the probability decreases, and vice versa).

We can get the estimated coefficients and then we know the formula of the logit
model. We can then compute the predicted probability for every individual in our
sample, computing the following formula for each individual:

𝑎𝑔𝑒,  𝑢𝑟𝑏𝑎𝑛( ) = exp𝑒𝑥𝑝 2.068369−0.2239737.𝑢𝑟𝑏𝑎𝑛+0.0257286.𝑎𝑔𝑒( ) 1+exp𝑒𝑥𝑝 2.068369−0.2239737.𝑢𝑟𝑏𝑎𝑛+0.0257286.𝑎𝑔𝑒( )  
This way we can get the exact probability for every individual in the sample,
conditional on his/her age and on whether they live in an urban or in a rural area by
plugging in their values.

In the following graph we can see how the predicted probability looks like:



Figure 1446 (Garcia-Gomez, 2022)

We have two lines, as people either live in an urban or a rural area. Each one of the
two lines tells us how age translates into different probability of public transport use.
The effect of age on the probability of public transport use is non-linear. Depending
on the age the effect is going to be different, but it is non-linear depending on age,
but we also have to pick one of the two curves, as the effect of age is different as an
individual lives or not in an urban area.

The coefficient of urban is negative ฀ the probability of public transport use is
smaller for those that live in an urban area. The line below is the one for the
individuals that live in an urban area, while the line above is for the people that live in
a rural area. So, the effect of age is different depending on where an individual live
and according to that we have to pick a curve; after we picked a curve, the effect is
going to be different based on the age of the individual.

The distance between the lines tells us the difference in the effect whether an
individual lives in an urban or rural area. Contrarily on what we saw in a linear



regression model, the distance between the lines now is not constant, but it differs
based on the age.
What is the effect of urban at age 20? The effect of living in a urban area and living in
a rural area is the difference between the line, and we need to check the distance
between the curves for when an individual is aged 20 (in figure 14 the blue arrow on
the left).
We do the same reasoning for age 60. At that age the effect of urban is much
smaller than at age 20, which means that the effect of living in an urban area at age
60 is not so different compared to living in a rural area.

The effect of age is the slope of the curve, so we need to pick one of the two lines and
to fix an age. To understand the effect of age in one of the curves, for example the
effect of age 20 for somebody who lives in an urban area, it is going to be the
derivative at that point, which means that for the person aged 20 living in an urban
area it is going to be the slope of the lower green line on the left in Figure 14. If we look
at the effect of age 20 for an individual that lives in a rural area, now the slope will be
slightly different (it will be the slope of the higher green line on the left).
The effect will be different based on the age distribution and on the values of the
other variable.

In conclusion, for dummy variables the effect will always be the difference between
the lines. The distance between the line will be different at different values of the
other x’s.
For continuous variables the effect will be different at different points of the
continuous variable but will also be influenced by the other variable as well, as we
can see from this example.

Lecture 34 (4.6) – Interpretation with Marginal
Effects
We are interested in knowing how to interpret the marginal effects, and how to
compute them for continuous and categorical variables. Then we will try to
understand when we can and when we cannot compare logit and probit models.



In non-linear models we can interpret the sign, the significance but not the
magnitude. As the coefficients measure the effect in units of the latent variable, we
need a transformation to measure in percentage points (the units of probability).

To do this we need to compute marginal effects. How can we do this? We talk about
marginal effects and discrete changes on the probability that y is equal to 1. This will
be different whether we have a continuous or a discrete variable. We have seen that
for the discrete (binary) variables, the difference was the distance between the lines,
while for the continuous variables it was the derivative (the slope at that point).

If the marginal effect for a continuous variable is the slope at a given point, then it is
a derivative of the probability with respect to :𝑥2

∂Pr𝑃𝑟 𝑥1,𝑥2( ) ∂𝑥2
The effects (the discrete changes) of a categorical (dummy) variable are:𝑥1

Pr 𝑃𝑟 𝑥1 = 1,  𝑥2( ) − 𝑃 𝑥1 = 0, 𝑥2( )  
For example, if we look at the effect of living in an urban area, it will be the difference
in the probability that one individual lives in an urban area conditional on minus𝑥2
the probability that the individual lives in a rural area conditional on .𝑥2

happens if the individual lives in an urban area, when an individual lives𝑥1 = 1 𝑥1 = 0
in a rural area.

We could also focus on what we refer to as risk ratio, or the relative risk, which is the
ratio between these two probabilities.

How can we compute this marginal effect?

∂Pr𝑃𝑟 𝑥1,𝑥2( ) ∂𝑥2 = {β2ϕ β0 + β1𝑥1 + β2𝑥2( ),   𝑤ℎ𝑒𝑟𝑒 ϕ .( )𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  β2 exp𝑒𝑥𝑝 (β0+ β1𝑥1+β2𝑥2)[1+exp𝑒𝑥𝑝 (β0+ β1𝑥1+β2𝑥2)]2  
The first case is for a probit model, the second for a logit.



By looking at the equations we can understand why the marginal effect depends on
the values of the other variables.
When we compute the marginal effect of we compute this derivative. The𝑥2
coefficient is multiplying the function that depends on and . That’s why it will𝑥1 𝑥2
always depend on the values of all the other variables.
It happens in both cases, whether we have a probit or a logit model.

We also know that we can interpret the sign by just looking at the coefficient. Here we
can see that we have multiplying a function which is always positive (it works bothβ2
for the probit and logit models). The sign of the marginal effect is always going to be
the same as the sign of in this case.β2
When we have to compute the marginal effect, we need to choose values of and𝑥1

, but which ones do we have to use? In the past, commonly it has been used to𝑥2
calculate the marginal effects at the sample means of and . In the sample we𝑥1 𝑥2
find the average sample mean for and for and then we use these value in the𝑥1 𝑥2
formula above and we will get a marginal effect.
Now, with better statistical programs, we can do something else, as the sample
means could not be representative of anyone in the sample (the mean of the urban
variable, for example, is a number between 1 and 0: it would mean that someone
lives partly in an urban area, which is nonsensical).
Now we can see that it is done for a reference individual, for example, someone that
lives in an urban area and is aged 40. We use these values in the formula and find
the marginal effect for someone aged 40 that lives in an urban area. This is a
conditional marginal effect.
Another alternative would be to compute the formula for every individual in the
sample. Once we have a value for each individual, we computer the average of
these values and obtain the average marginal effect.

Discrete change in due to change in dummy variable .𝑃 𝑥1,  𝑥2[ ] 𝑥1
When we think about the change in the variable due to a change in the dummy
variable, so we compute these discrete changes:

Pr 𝑃𝑟 𝑥1 = 1,  𝑥2( ) − Pr 𝑃𝑟 𝑥1 =  0,  𝑥2( ) 
Or if we saw the relative ratio:



𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 = 𝑃 𝑥1,=1,𝑥2( ) Pr𝑃𝑟 𝑥1=0𝑥2( ) 
Then we already see that it will compute the probabilities at both and .𝑥1 𝑥2
It will also compute the probabilities at both equal to 1 and to 0, so just like for both𝑥1
urban and rural area. Then we have to fix only , so then we can consider as before𝑥2
the sample mean of . In our example it could be the average age or the reference𝑥2
individual. For example, we choose an individual aged 40 and use the following
formula for a logit model. We then plug in .𝑎𝑔𝑒 = 40

exp𝑒𝑥𝑝 2.1−0.22+0.03×40( ) 1−exp𝑒𝑥𝑝 2.1−0.22+0.03×40( ) − exp𝑒𝑥𝑝 2.1+0.03×40( ) 1−exp𝑒𝑥𝑝 2.1+0.03×40( ) 
In alternative we could just plug every single individual’s value and then do the
average across all the observation.
Average marginal effects
This is what we do in Stata. We need to tell Stata that the dummy variables are
dummy variables and the way in which we do this is by using the “i.”.

Figure 1547 (Garcia-Gomez, 2022)

Stata will compute the marginal effect, which tells us that for factored levels it’s a
discrete change from the base level. The factor level refers to qualitative variables, or



categorical variables, and it is giving us the difference compared to the reference
category. This is what Stata calls the base level and it is what is important to us: we
want a discrete change, not a continuous one. If we do not do “i.” in the command,
Stata will think that this is a continuous variable, getting then the derivative (which
makes no sense for dummy variables).

Once we have these coefficients, we can interpret the effects. How do we interpret
that marginal effect? We can say that, on average, living in an urban area compared
to living in a rural area decreases the probability of public transport use by 1.18
percentage points, ceteris paribus/keeping age fixed.

Similarly, thinking about the coefficient of the average effect of age, we can say that
on average an additional year of age increases the probability of public transport
use by 0.14 percentage points, ceteris paribus/keeping urban fixed.

Conditional marginal effects
Sometimes we want to compute the conditional marginal effect in which we fix
particular values of the covariates.
If we fix, for example, urban to 0, which means that an individual lives in a rural area,
and we fix age to 80, we then get the conditional marginal effect again, it will always
be the difference between the discrete variables. For age is going to be the derivative
at that point.

Figure 1648 (Garcia-Gomez, 2022)



We can say that living in an urban area decreases the probability of public transport
use by 0.4 percentage point for an individual aged 80.

For age we would say that an additional year of age increases the probability of
public transport use by 0.04 percentage points (as we have to multiply the
coefficient by 100) for an individual that lives in an urban area and with age equal to
80 years old.

In the interpretation we always have to make clear at which values we are fixing it.
When we talk about the binary variables, we have to notice that it is always the
urban equal to 1 minus urban equal to 0, then it is for someone aged 80. So, it is
always the distance between the two lines, but when we look at age we need to
specify if we are looking for someone that lives in urban or rural areas.

Are the effects of logit and probit models comparable?
We cannot compare the ’s directly. There is a formula in which we can roughlyβ
compare one to the other, although it is not really doing much. We can compare the
set of statistics of the ’s, as we are dividing by the standard error: we are puttingβ
things in the same unit and more importantly we can compare the marginal effect
and also the goodness of fit measure. We can use these measures to choose
between a logit and a probit model.

Lecture 35 (4.7) – Marginal Effects with
Interactions
What is the effect of age? Is the effect of age different for people in urban or in rural
areas? We could create a new variable and include an interaction variable in the
models. We create a new variable called urban_age (which is urban*age) and then
include it in the model. The coefficient will differ whether someone lives in a rural or in
an urban area. When urban is 0 (the individual lives in a rural area), the coefficient of
age will be 0.036. When urban equals to 1, the coefficient is .0. 036 − 0. 015



Figure 1849 (Garcia-Gomez, 2022)

What is the problem? Now we want to estimate marginal effects. We can ask Stata to
compute them. But Stata needs to understand that the interaction is really related to
urban and age. If we are changing age, we also need that the urban_age changes
and that Stata understands that it is part of the same variable. Otherwise, Stata will
compute the marginal effects for urban, for age and for urban age, as if this third
variable was an independent unrelated variable.
To let Stata know that this is an interaction we compute: logit ptuse i.urban ## c.age.

Figure 1950 (Garcia-Gomez, 2022)

In this way we include an interaction between urban (dummy variable, and we use
“i.”) and age (continuous variable, and we use “c.”). If we look at the output that we



get, for the variable urban we get a coefficient for it, then we get a coefficient for age,
and also one for the interaction.
These are the same coefficients we had before.
If we compare these outputs with the table before, nothing changes in the estimation
of the coefficients. Now Stata recognizes those as being part of the same variable.
This information can be used when we compute the marginal effect.
What do we need to compute the marginal effects? We simply do as we did before.

Figure 2051 (Garcia-Gomez, 2022)

For example, we compute the average marginal effect and Stata gives us the
average marginal effect of urban and age. While computing it, it accounts for the
interaction.

One of the reasons to compute this interaction is because we are interested about
the different marginal effects for people that live in urban and rural area, and the
different marginal effect of age for people living in urban compared to rural areas.
We think that this has to be different not only because the model is linear, but
because there are some differences per se without an interaction, as we have two
curves, and the slope of age will be different in each different curve. This allows for
further differences and not only the ones that are imposed by the functional form of
the probit or the logit model.

As we are interested in the different results between the different marginal effects of
age for people that live in an urban and in a rural area, we could get those results
through Stata:



Figure 2152 (Garcia-Gomez, 2022)

We can compute the marginal effect for those who live in an urban area and then for
those who live in a rural area. Once we have them, we can see if the average effect
of age is larger or smaller for those that live in an urban area compared to those that
live in a rural area.

There are other case in which we need to pay attention about the relationship
between the two variables. For example, we could have polynomials of continuous
variables. We could estimate such a model in two ways:

1. As we did in the past, if we want, for example, to construct the variable age2
(age squared), which is age*age, and then include the variable in our model.

2. We could tell Stata that we want to have age and age2 in our model, and that
these variables are related.

The coefficients calculated in these two ways will be the same, but to compute the
marginal effects we need to use the second option, otherwise Stata will think that



age and age2 are two independent variables, and it will not look at their joint
coefficients when we want to compute the marginal effects.

These can be useful for other applications and alternatives which we will not analyse.

Lecture 36 (4.8) – Odds ratio in logit
We are focusing on the odds ratio in the logit model. There is a common way to
interpret the results in a logit model (it is not recommended to us, as it is often
wrongly interpretated).

Odd ratios are commonly used in the interpretation of the logit model, especially in
the past. Now we are just using the marginal effects.

What is an odds ratio?
First of all, we have to define the odds, which is a ratio between the probability of
using public transport use in our example, when someone lives in an urban area,
divided by the probability of not using public transport for someone who lives in an
urban area, which is when y is equal to 0 conditional on :𝑥1 = 1

Pr𝑃𝑟 𝑥1=1,𝑥2( ) Pr𝑃𝑟 𝑥1=1,𝑥2( ) 
This expression is what we refer to as odds (these are the odds of using public
transportation for urban). We can define the same expression for those that live in a
rural area:

Pr𝑃𝑟 𝑥1=0,𝑥2( ) Pr𝑃𝑟 𝑥1=0,𝑥2( ) 
These are the odds of using public transportation for rural areas.

Once we have each of these two ratios, the odds ratio is the ratio of the odds:

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 = Pr𝑃𝑟 𝑥1=1,𝑥2( ) Pr𝑃𝑟 𝑥1=1,𝑥2( ) Pr𝑃𝑟 𝑥1=0,𝑥2( ) Pr𝑃𝑟 𝑥1=0,𝑥2( ) 



This is hard to interpret. But we can see that it simplifies to the exponential of :β1
𝑂𝑅 = Pr𝑃𝑟 𝑥1=1,𝑥2( ) Pr𝑃𝑟 𝑥1=1,𝑥2( ) Pr𝑃𝑟 𝑥1=0,𝑥2( ) Pr𝑃𝑟 𝑥1=0,𝑥2( ) = exp 𝑒𝑥𝑝 β1( ) 

is the coefficient for that is whether the dummy variable or whether the personβ1 𝑥1
lives in an urban or rural area. This is a simple transformation and now we can
compute average marginal effects with the software we had, whether before
researchers did not have Stata.
Once we have the estimate from the logit, we can apply the exponential and then we
can get the odds ratio. This is appealing, but the problem is that if we say that the
odds ratio increases or decreases and we give the amount, it is very hard to
understand the meaning of the ratio.

An exception of this happens when the odds ratio can be interpreted as risk ratio. But
this an extreme event, as the probability that y is equal to 0 for equal to zero must𝑥1
be close to one. It is an event that happens with a very low probability.
In formula, if and , then we have that OR=RR.𝑃𝑟 𝑥1 = 0, 𝑥2( )→1 𝑃𝑟 𝑥1 = 1, 𝑥2( )→1
In papers we often find that people interpret the odds ratio as it was a risk ratio, but
for events that do not have such a low incidence, therefore this interpretation is
incorrect.

Lecture 37 (4.9) – Hypothesis testing
We are focusing on hypothesis testing in nonlinear models for binary data, especially
when we are interested in testing a single hypothesis and also multiple hypothesis.

We will start with single hypothesis testing in logit and probit. We talk about single
hypothesis when we want to test the null hypothesis that the population parameter is
equal to a given value versus the alternative, that is the different to that value:

𝐻0: β𝑘 = β*   𝑣𝑠   𝐻1: β𝑘 ≠ β*
Is similar to what we saw in the first module, as the test statistic works exactly as it
worked with ordinary least squares:



𝑧 = β̂𝑘−β*σ̂β̂𝑘
~α𝑁 0, 1( )

We can use the same test statistic and then use the z-statistic comparing the value
that we get with the critical values, or the p-values in the usual way.

Figure 2253 (Garcia-Gomez, 2022)

This is something we already did in the previous lectures, so we can look at the
coefficients and then if we are interested in seeing whether our given coefficient is
statistically significantly different from 0 or not. We can just look at the z-statistic and
then compare with the critical values (which are the same of when we were using
OLS), or we can interpret the p-values in the usual way.
For example, we see that the differences in public transport use between those living
in urban compared to those living in rural areas are not statistically significantly
different from 0 at 10% significance level.
Or that urban is a statistically significant at a 10% significance level. These two things
are comparable. While if we look at the effect of age on public transport use,
remembering that we cannot interpret the size of the coefficient, we can look at the
hypothesis testing on whether it is statistically significantly different from 0 or not.
Then we see that in this case the p-value is 0.000 (so it is a very small p-value). We
can then conclude that the effect of age on public transport use is statistically
significantly different from 0 at a 1% significance level. We interpret it in the exact way
we did with the OLS model.

For multiple hypothesis testing in logit and probit we are going to analyse the two
most common tests done for multiple hypothesis testing. When we have multiple



hypothesis, we refer to two types of models, the restricted one ( ) and the𝐻0
unrestricted one ( ). Then all that null hypothesis is that the restricted model is true𝐻1
versus the unrestricted model is true.

The restricted model is a model in which we impose some restrictions such as, for
example, that some of the coefficients are equal to zero, while in the unrestricted
model they are not.

The likelihood ratio test, which is one of the two tests, is based on both the restricted
and the unrestricted models, therefore we have to estimate them both. We start by
estimating the restricted model, where we impose some restrictions on the
parameters and then get a log-likelihood ratio of this model.
Then we also compute the unrestricted model and then we get the log-likelihood of
that model.
We compare then those two log-likelihood ratios:

𝐿𝑅 = 2 log 𝑙𝑜𝑔 𝐿𝑈𝑅 − log 𝑙𝑜𝑔 𝐿𝑅  ( )~αχ2 𝑞( )
Where q is the number of restrictions we have set in our model (e.g., q=3 means that
we are testing whether three coefficients are equal to 0 in our null hypothesis).
If they are different enough, then we conclude that we reject the null hypothesis. If
they are very similar, the unrestricted model is not really giving much compared to
the restricted model, so we would not reject the null hypothesis that the restricted
model is true.
We do this by computing the formula above: two times the difference of the log of
the two models follows an Akaike square distribution with q degrees of freedom.

The other test is the Wald test, that it is only based on the unrestricted model:

𝑊~αχ2 𝑞( )
The exact formula is not analysed in this course. This is computed by Stata. The Wald
test is also distributed following an Akaike square distribution with q degrees of
freedom. In this case too, q is equal to the number of restrictions, and we will be able
to interpret the results in the usual way.



Lecture 38 (4.10) – Goodness of fit
We are focusing on the measures of goodness of fit, and in particular about the most
commonly used measures of goodness of fit in logit and probit models.

Comparing goodness of fit is essential if our objective is to obtain the model that fits
the data best. If we are interested in obtaining a causal effect, the same discussion,
the same issues we had in previous topics also apply to this case.

The first measure we focus on is the log-likelihood, which we cannot interpret per se.
We can compare different models and see which ones give us the largest
log-likelihood ratio. The log-likelihood ratio will always be negative, so the higher
likelihood ratio is going to be the one closer to 0. When just comparing log-likelihood,
one of the problems is that the log-likelihood is always going to increase when we
add additional variables, but sometimes the addition of a variable will increase it of
just a little. As what we had in the linear case where we had the R-squared and the
adjusted R-squared, where we were penalizing by the number of parameters, now
we want to do the same. To do this we use the information criterion that penalizes
the log-likelihood with a number of coefficients in the model. But how?
The Akaike information criterion computes this formula:

𝐴𝐼𝐶 = −2log𝑙𝑜𝑔 𝐿+2 𝑘+1( ) 𝑁
The “-2” in the formula means that the log-likelihood is negative. So now that Akaike
is going to be positive and then we want the likelihood to be close to 0 as much as
possible, so when we make it positive, the lower the Akaike the better our goodness
of fit are. k is the number of coefficients we estimate in our model.
Our aim is to have the lowest Akaike possible, and we will pick the model with the
lowest Akaike information criteria.

Another goodness of fit measure is the percentage of explained variation, or the
Efron’s R2, which compares the variation that is explained by our data with the total
variation in our explanatory variables.



1 − 𝑖=1
𝑁∑ 𝑦𝑖−π̂𝑖( )2

𝑖=1
𝑁∑ 𝑦𝑖−𝑦𝑖( )2

The is the predicted probability, so we have 1 minus the variation predicted by ourπ̂
model divided by total variation in the data.

Another measure is the pseudo-R2 or McFadden’s R2, which tells us the extent to
which the model is an improvement over one with just a constant term.

1 − log𝑙𝑜𝑔 𝐿𝑈𝑅 log𝑙𝑜𝑔 𝐿0 
We have this ratio in which we find the log-likelihood of the unrestricted model. We
then compare this log-likelihood with the log-likelihood of a model that only includes
a constant. If this model is not a real improvement over the one that only has a
constant, the ratio will be equal to 1. Then one minus one will be 0. The larger our
improvement (so the closer to zero), the higher our likelihood. Compare to the
log-likelihood of the model with our constant that it is always going to be larger in
absolute value, but both will be negative. Then the smaller this ratio, it means that
our log-likelihood model of the unrestricted model is closer to zero, so then the
difference will be closer to one. So, the closer the pseudo-R2 is to 1, the better the
fitting of our model.

The last measure is the Count R2 (percentage of correct predictions). It tells us the
percentage of correct predictions. When Stata computes this, for every individual, for
every observation in our sample, we have the observed y (so if the person used
public transport, 1, or not, 0). Then for every single person we can obtain our
predicted probability. We estimate the model and then we have seen how we can
compute these predicted probabilities.



Figure 2354 (Garcia-Gomez, 2022)

The predicted y (and not the predicted probability), so whether a person is going to
use public transport or not, is 1 if the predicted probability is larger than 0.5 and 0
otherwise. The first individual has a predicted probability of 0.23, which is smaller
than 0.5, so that individual will not use the public transport. Is this a correct
prediction? We can see the observed and note that it is correct. We have correct
predictions until the fourth individual, for which we do not have a correct prediction.
We can do this for every individual in the sample and then see the share of the
predictions that were correct and the one of those that were not, and that gives us
the Count R2.
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